論文の概要: Expanding Training Data for Endoscopic Phenotyping of Eosinophilic Esophagitis
- arxiv url: http://arxiv.org/abs/2502.04199v1
- Date: Thu, 06 Feb 2025 16:38:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-07 14:31:36.866029
- Title: Expanding Training Data for Endoscopic Phenotyping of Eosinophilic Esophagitis
- Title(参考訳): 好酸球性食道炎の内視鏡的診断のためのトレーニングデータの拡張
- Authors: Juming Xiong, Hou Xiong, Quan Liu, Ruining Deng, Regina N Tyree, Girish Hiremath, Yuankai Huo,
- Abstract要約: 好酸球性食道炎 (EoE) は、好酸球性炎症を主訴に発症した慢性食道疾患である。
近年、EREFSシステムによって誘導されるAI支援内視鏡画像は、侵襲的な組織学的評価への依存を減らすための潜在的な代替手段として出現している。
本研究は,オンラインプラットフォーム,公開データセット,電子教科書の多様な画像集合を用いて学習データを増強することにより,深層学習に基づくEoE表現型分類の性能を向上させることを目的とする。
- 参考スコア(独自算出の注目度): 9.044271577557721
- License:
- Abstract: Eosinophilic esophagitis (EoE) is a chronic esophageal disorder marked by eosinophil-dominated inflammation. Diagnosing EoE usually involves endoscopic inspection of the esophageal mucosa and obtaining esophageal biopsies for histologic confirmation. Recent advances have seen AI-assisted endoscopic imaging, guided by the EREFS system, emerge as a potential alternative to reduce reliance on invasive histological assessments. Despite these advancements, significant challenges persist due to the limited availability of data for training AI models - a common issue even in the development of AI for more prevalent diseases. This study seeks to improve the performance of deep learning-based EoE phenotype classification by augmenting our training data with a diverse set of images from online platforms, public datasets, and electronic textbooks increasing our dataset from 435 to 7050 images. We utilized the Data-efficient Image Transformer for image classification and incorporated attention map visualizations to boost interpretability. The findings show that our expanded dataset and model enhancements improved diagnostic accuracy, robustness, and comprehensive analysis, enhancing patient outcomes.
- Abstract(参考訳): 好酸球性食道炎 (EoE) は、好酸球性炎症を主訴に発症した慢性食道疾患である。
EoEの診断は通常、食道粘膜の内視鏡検査と、組織学的診断のために食道生検を取得する。
近年、EREFSシステムによって誘導されるAI支援内視鏡画像は、侵襲的な組織学的評価への依存を減らすための潜在的な代替手段として出現している。
これらの進歩にもかかわらず、AIモデルをトレーニングするためのデータの可用性が限られているため、大きな課題が続いている。
本研究は,オンラインプラットフォーム,公開データセット,電子教科書などの多様な画像を用いて,学習データを435から7050まで増大させることにより,ディープラーニングに基づくEoE表現型分類の性能を向上させることを目的とする。
我々は,データ効率のよい画像変換器を画像分類に利用し,注意マップの可視化を取り入れて解釈性を高めた。
その結果,拡張データセットとモデル拡張により診断精度,堅牢性,包括的分析が向上し,患者の成績が向上した。
関連論文リスト
- Cross-organ Deployment of EOS Detection AI without Retraining: Feasibility and Limitation [6.200516824977507]
慢性鼻副鼻腔炎(CRS)は副鼻腔の炎症が持続していることが特徴である。
粘膜免疫応答において重要な要素であるEosは、CRSの重症度と関係している。
好酸球性CRSの診断は、典型的にはHPF当たり10-20 eosの閾値を用いる。
論文 参考訳(メタデータ) (2024-11-24T18:01:13Z) - Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
本研究は,人工知能(AI)モデルを用いた医用合成データ生成の臨床評価に焦点を当てた。
本論文は,a) 医用専門家による合成画像の体系的評価のためのプロトコルを提示し,b) 高分解能WCE画像合成のための新しい変分オートエンコーダモデルであるTIDE-IIを評価する。
その結果、TIDE-IIは臨床的に関連性のあるWCE画像を生成し、データの不足に対処し、診断ツールの強化に役立つことがわかった。
論文 参考訳(メタデータ) (2024-10-31T19:48:50Z) - Multibranch Generative Models for Multichannel Imaging with an Application to PET/CT Synergistic Reconstruction [42.95604565673447]
本稿では,マルチブランチ生成モデルを用いた医用画像の相乗的再構築のための新しい手法を提案する。
我々は,MNIST (Modified National Institute of Standards and Technology) とPET (positron emission tomography) とCT (Computed tomography) の2つのデータセットに対するアプローチの有効性を実証した。
論文 参考訳(メタデータ) (2024-04-12T18:21:08Z) - Spatiotemporal Disentanglement of Arteriovenous Malformations in Digital
Subtraction Angiography [37.44819725897024]
本提案手法は, 船舶の自動分類による臨界情報を強調することにより, デジタルサブトラクション血管造影(DSA)画像シリーズを向上することを目的としている。
本法は, 臨床用DSA画像シリーズを用いて検討し, 動脈と静脈の効率的な鑑別を実証した。
論文 参考訳(メタデータ) (2024-02-15T00:29:53Z) - Uncertainty Quantification for Eosinophil Segmentation [16.70916787417709]
好酸球性食道炎 (EoE) は有病率が高くなるアレルギー性疾患である。
EoEを診断するためには、病理学者は1つの高出力場(400X倍率)に15以上の好酸球を見つける必要がある。
深部画像分割を用いた好酸球定量化のためのAdorno et al のアプローチの改善を提案する。
論文 参考訳(メタデータ) (2023-09-28T15:49:01Z) - MedFMC: A Real-world Dataset and Benchmark For Foundation Model
Adaptation in Medical Image Classification [41.16626194300303]
ファンデーションモデルは、多くの場合、大規模なデータで事前訓練されているが、様々なビジョンや言語アプリケーションのジャンプ開始において、最も成功している。
最近の進歩により、下流タスクにおける基礎モデルの適応は、少数のトレーニングサンプルだけで効率的に行えるようになった。
しかし, 医用画像解析におけるそのような学習パラダイムの適用は, 一般に公開されているデータやベンチマークが不足しているため, 依然として少ない。
論文 参考訳(メタデータ) (2023-06-16T01:46:07Z) - ViT-DAE: Transformer-driven Diffusion Autoencoder for Histopathology
Image Analysis [4.724009208755395]
高品質な病理画像合成のための視覚変換器(ViT)と拡散オートエンコーダを統合したViT-DAEを提案する。
提案手法は, 実写画像生成におけるGAN法とバニラDAE法より優れている。
論文 参考訳(メタデータ) (2023-04-03T15:00:06Z) - A Robust Ensemble Model for Patasitic Egg Detection and Classification [9.449507409551842]
腸内寄生虫感染症は、世界中で致死性の主要な原因となっているが、それでも時間節約、高感度、ユーザフレンドリーな検査方法が欠如している。
本稿では,顕微鏡画像中の寄生卵を自動的に識別するために,YOLOv5や変種カスケードRCNNなどの物体検出器を適用した。
論文 参考訳(メタデータ) (2022-07-04T13:53:46Z) - Data augmentation for deep learning based accelerated MRI reconstruction
with limited data [46.44703053411933]
ディープニューラルネットワークは、画像復元と再構成タスクの非常に成功したツールとして登場した。
最先端のパフォーマンスを達成するためには、大規模で多様な画像集合の訓練が重要であると考えられる。
本稿では,MRI画像再構成の高速化のためのデータ拡張のためのパイプラインを提案し,必要なトレーニングデータを削減する上での有効性について検討する。
論文 参考訳(メタデータ) (2021-06-28T19:08:46Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Advancing Eosinophilic Esophagitis Diagnosis and Phenotype Assessment
with Deep Learning Computer Vision [0.7915536524413249]
好酸球性食道炎(英: eosinophilic esophagitis, eoe)は炎症性食道疾患である。
深部画像分割を用いた好酸球の自動定量手法を提案する。
U-Netモデルと後処理システムを適用して、EoEを診断し、疾患の重症度と進行を記述できる好酸球に基づく統計データを生成する。
論文 参考訳(メタデータ) (2021-01-13T20:01:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。