Large Language Models to Identify Social Determinants of Health in
Electronic Health Records
- URL: http://arxiv.org/abs/2308.06354v2
- Date: Tue, 5 Mar 2024 12:55:47 GMT
- Title: Large Language Models to Identify Social Determinants of Health in
Electronic Health Records
- Authors: Marco Guevara, Shan Chen, Spencer Thomas, Tafadzwa L. Chaunzwa, Idalid
Franco, Benjamin Kann, Shalini Moningi, Jack Qian, Madeleine Goldstein, Susan
Harper, Hugo JWL Aerts, Guergana K. Savova, Raymond H. Mak, Danielle S.
Bitterman
- Abstract summary: Social determinants of health (SDoH) have an important impact on patient outcomes but are incompletely collected from the electronic health records (EHRs)
This study researched the ability of large language models to extract SDoH from free text in EHRs, where they are most commonly documented.
800 patient notes were annotated for SDoH categories, and several transformer-based models were evaluated.
- Score: 2.168737004368243
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Social determinants of health (SDoH) have an important impact on patient
outcomes but are incompletely collected from the electronic health records
(EHR). This study researched the ability of large language models to extract
SDoH from free text in EHRs, where they are most commonly documented, and
explored the role of synthetic clinical text for improving the extraction of
these scarcely documented, yet extremely valuable, clinical data. 800 patient
notes were annotated for SDoH categories, and several transformer-based models
were evaluated. The study also experimented with synthetic data generation and
assessed for algorithmic bias. Our best-performing models were fine-tuned
Flan-T5 XL (macro-F1 0.71) for any SDoH, and Flan-T5 XXL (macro-F1 0.70). The
benefit of augmenting fine-tuning with synthetic data varied across model
architecture and size, with smaller Flan-T5 models (base and large) showing the
greatest improvements in performance (delta F1 +0.12 to +0.23). Model
performance was similar on the in-hospital system dataset but worse on the
MIMIC-III dataset. Our best-performing fine-tuned models outperformed zero- and
few-shot performance of ChatGPT-family models for both tasks. These fine-tuned
models were less likely than ChatGPT to change their prediction when
race/ethnicity and gender descriptors were added to the text, suggesting less
algorithmic bias (p<0.05). At the patient-level, our models identified 93.8% of
patients with adverse SDoH, while ICD-10 codes captured 2.0%. Our method can
effectively extracted SDoH information from clinic notes, performing better
compare to GPT zero- and few-shot settings. These models could enhance
real-world evidence on SDoH and aid in identifying patients needing social
support.
Related papers
- Utilizing Large Language Models to Generate Synthetic Data to Increase the Performance of BERT-Based Neural Networks [0.7071166713283337]
We created datasets large enough to train machine learning models.
Our goal is to label behaviors corresponding to autism criteria.
Augmenting data increased recall by 13% but decreased precision by 16%.
arXiv Detail & Related papers (2024-05-08T03:18:12Z) - Socially Aware Synthetic Data Generation for Suicidal Ideation Detection
Using Large Language Models [8.832297887534445]
We introduce an innovative strategy that leverages the capabilities of generative AI models to create synthetic data for suicidal ideation detection.
We benchmarked against state-of-the-art NLP classification models, specifically, those centered around the BERT family structures.
Our synthetic data-driven method, informed by social factors, offers consistent F1-scores of 0.82 for both models.
arXiv Detail & Related papers (2024-01-25T18:25:05Z) - NLICE: Synthetic Medical Record Generation for Effective Primary
Healthcare Differential Diagnosis [0.765458997723296]
We use a public disease-symptom data source called SymCat to construct the patients records.
In order to increase the expressive nature of the synthetic data, we use a medically-standardized symptom modeling method called NLICE.
We show results for the effectiveness of using the datasets to train predictive disease models.
arXiv Detail & Related papers (2024-01-24T19:17:45Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
An extremely boosted neural network (XBNet) is used to predict clinical deterioration (CD)
The XGBoost model obtained the best results in predicting CD among Brazilian hospitals' data.
arXiv Detail & Related papers (2022-12-17T23:29:14Z) - Textual Data Augmentation for Patient Outcomes Prediction [67.72545656557858]
We propose a novel data augmentation method to generate artificial clinical notes in patients' Electronic Health Records.
We fine-tune the generative language model GPT-2 to synthesize labeled text with the original training data.
We evaluate our method on the most common patient outcome, i.e., the 30-day readmission rate.
arXiv Detail & Related papers (2022-11-13T01:07:23Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
We show the importance of this problem in medical community.
We present a modification of Bidirectional Representations from Transformers (BERT) model for classification sequence.
We use a large-scale Russian EHR dataset consisting of about 4 million unique patient visits.
arXiv Detail & Related papers (2020-07-15T09:22:55Z) - Med7: a transferable clinical natural language processing model for
electronic health records [6.935142529928062]
We introduce a named-entity recognition model for clinical natural language processing.
The model is trained to recognise seven categories: drug names, route, frequency, dosage, strength, form, duration.
We evaluate the transferability of the developed model using the data from the Intensive Care Unit in the US to secondary care mental health records (CRIS) in the UK.
arXiv Detail & Related papers (2020-03-03T00:55:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.