Pedestrian Trajectory Prediction in Pedestrian-Vehicle Mixed
Environments: A Systematic Review
- URL: http://arxiv.org/abs/2308.06419v1
- Date: Fri, 11 Aug 2023 23:58:51 GMT
- Title: Pedestrian Trajectory Prediction in Pedestrian-Vehicle Mixed
Environments: A Systematic Review
- Authors: Mahsa Golchoubian, Moojan Ghafurian, Kerstin Dautenhahn, Nasser
Lashgarian Azad
- Abstract summary: Planning an autonomous vehicle's path in a space shared with pedestrians requires reasoning about pedestrians' future trajectories.
This paper systematically reviews different methods proposed in the literature for modelling pedestrian trajectory prediction.
- Score: 3.809702129519642
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Planning an autonomous vehicle's (AV) path in a space shared with pedestrians
requires reasoning about pedestrians' future trajectories. A practical
pedestrian trajectory prediction algorithm for the use of AVs needs to consider
the effect of the vehicle's interactions with the pedestrians on pedestrians'
future motion behaviours. In this regard, this paper systematically reviews
different methods proposed in the literature for modelling pedestrian
trajectory prediction in presence of vehicles that can be applied for
unstructured environments. This paper also investigates specific considerations
for pedestrian-vehicle interaction (compared with pedestrian-pedestrian
interaction) and reviews how different variables such as prediction
uncertainties and behavioural differences are accounted for in the previously
proposed prediction models. PRISMA guidelines were followed. Articles that did
not consider vehicle and pedestrian interactions or actual trajectories, and
articles that only focused on road crossing were excluded. A total of 1260
unique peer-reviewed articles from ACM Digital Library, IEEE Xplore, and Scopus
databases were identified in the search. 64 articles were included in the final
review as they met the inclusion and exclusion criteria. An overview of
datasets containing trajectory data of both pedestrians and vehicles used by
the reviewed papers has been provided. Research gaps and directions for future
work, such as having more effective definition of interacting agents in deep
learning methods and the need for gathering more datasets of mixed traffic in
unstructured environments are discussed.
Related papers
- Polar Collision Grids: Effective Interaction Modelling for Pedestrian
Trajectory Prediction in Shared Space Using Collision Checks [3.809702129519642]
Predicting trajectories is a crucial capability for autonomous vehicles' safe navigation.
Modelling both pedestrian-pedestrian and pedestrian-vehicle interactions can increase the accuracy of the pedestrian trajectory prediction models.
arXiv Detail & Related papers (2023-08-13T00:20:22Z) - Learning Pedestrian Actions to Ensure Safe Autonomous Driving [12.440017892152417]
It is critical for Autonomous Vehicles to have the ability to predict pedestrians' short-term and immediate actions in real-time.
In this work, a novel multi-task sequence to sequence Transformer encoders-decoders (TF-ed) architecture is proposed for pedestrian action and trajectory prediction.
The proposed approach is compared against an existing LSTM encoders decoders (LSTM-ed) architecture for action and trajectory prediction.
arXiv Detail & Related papers (2023-05-22T14:03:38Z) - Multi-Vehicle Trajectory Prediction at Intersections using State and
Intention Information [50.40632021583213]
Traditional approaches to prediction of future trajectory of road agents rely on knowing information about their past trajectory.
This work instead relies on having knowledge of the current state and intended direction to make predictions for multiple vehicles at intersections.
Message passing of this information between the vehicles provides each one of them a more holistic overview of the environment.
arXiv Detail & Related papers (2023-01-06T15:13:23Z) - Behavioral Intention Prediction in Driving Scenes: A Survey [70.53285924851767]
Behavioral Intention Prediction (BIP) simulates a human consideration process and fulfills the early prediction of specific behaviors.
This work provides a comprehensive review of BIP from the available datasets, key factors and challenges, pedestrian-centric and vehicle-centric BIP approaches, and BIP-aware applications.
arXiv Detail & Related papers (2022-11-01T11:07:37Z) - PedFormer: Pedestrian Behavior Prediction via Cross-Modal Attention
Modulation and Gated Multitask Learning [10.812772606528172]
We propose a novel framework that relies on different data modalities to predict future trajectories and crossing actions of pedestrians from an ego-centric perspective.
We show that our model improves state-of-the-art in trajectory and action prediction by up to 22% and 13% respectively on various metrics.
arXiv Detail & Related papers (2022-10-14T15:12:00Z) - Pedestrian Stop and Go Forecasting with Hybrid Feature Fusion [87.77727495366702]
We introduce the new task of pedestrian stop and go forecasting.
Considering the lack of suitable existing datasets for it, we release TRANS, a benchmark for explicitly studying the stop and go behaviors of pedestrians in urban traffic.
We build it from several existing datasets annotated with pedestrians' walking motions, in order to have various scenarios and behaviors.
arXiv Detail & Related papers (2022-03-04T18:39:31Z) - Euro-PVI: Pedestrian Vehicle Interactions in Dense Urban Centers [126.81938540470847]
We propose Euro-PVI, a dataset of pedestrian and bicyclist trajectories.
In this work, we develop a joint inference model that learns an expressive multi-modal shared latent space across agents in the urban scene.
We achieve state of the art results on the nuScenes and Euro-PVI datasets demonstrating the importance of capturing interactions between ego-vehicle and pedestrians (bicyclists) for accurate predictions.
arXiv Detail & Related papers (2021-06-22T15:40:21Z) - Pedestrian Behavior Prediction for Automated Driving: Requirements,
Metrics, and Relevant Features [1.1888947789336193]
We analyze the requirements on pedestrian behavior prediction for automated driving via a system-level approach.
Based on human driving behavior we derive appropriate reaction patterns of an automated vehicle.
We present a pedestrian prediction model based on a Variational Conditional Auto-Encoder which incorporates multiple contextual cues.
arXiv Detail & Related papers (2020-12-15T16:52:49Z) - Multi-Modal Hybrid Architecture for Pedestrian Action Prediction [14.032334569498968]
We propose a novel multi-modal prediction algorithm that incorporates different sources of information captured from the environment to predict future crossing actions of pedestrians.
Using the existing 2D pedestrian behavior benchmarks and a newly annotated 3D driving dataset, we show that our proposed model achieves state-of-the-art performance in pedestrian crossing prediction.
arXiv Detail & Related papers (2020-11-16T15:17:58Z) - PiP: Planning-informed Trajectory Prediction for Autonomous Driving [69.41885900996589]
We propose planning-informed trajectory prediction (PiP) to tackle the prediction problem in the multi-agent setting.
By informing the prediction process with the planning of ego vehicle, our method achieves the state-of-the-art performance of multi-agent forecasting on highway datasets.
arXiv Detail & Related papers (2020-03-25T16:09:54Z) - Spatiotemporal Relationship Reasoning for Pedestrian Intent Prediction [57.56466850377598]
Reasoning over visual data is a desirable capability for robotics and vision-based applications.
In this paper, we present a framework on graph to uncover relationships in different objects in the scene for reasoning about pedestrian intent.
Pedestrian intent, defined as the future action of crossing or not-crossing the street, is a very crucial piece of information for autonomous vehicles.
arXiv Detail & Related papers (2020-02-20T18:50:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.