Where Do You Go? Pedestrian Trajectory Prediction using Scene Features
- URL: http://arxiv.org/abs/2501.13848v1
- Date: Thu, 23 Jan 2025 17:15:26 GMT
- Title: Where Do You Go? Pedestrian Trajectory Prediction using Scene Features
- Authors: Mohammad Ali Rezaei, Fardin Ayar, Ehsan Javanmardi, Manabu Tsukada, Mahdi Javanmardi,
- Abstract summary: We present a novel trajectory prediction model that integrates both pedestrian interactions and environmental context.
Our approach captures spatial and temporal interactions among pedestrians within a sparse graph framework.
Our method significantly outperforms existing state-of-the-art approaches.
- Score: 1.8874331450711404
- License:
- Abstract: Accurate prediction of pedestrian trajectories is crucial for enhancing the safety of autonomous vehicles and reducing traffic fatalities involving pedestrians. While numerous studies have focused on modeling interactions among pedestrians to forecast their movements, the influence of environmental factors and scene-object placements has been comparatively underexplored. In this paper, we present a novel trajectory prediction model that integrates both pedestrian interactions and environmental context to improve prediction accuracy. Our approach captures spatial and temporal interactions among pedestrians within a sparse graph framework. To account for pedestrian-scene interactions, we employ advanced image enhancement and semantic segmentation techniques to extract detailed scene features. These scene and interaction features are then fused through a cross-attention mechanism, enabling the model to prioritize relevant environmental factors that influence pedestrian movements. Finally, a temporal convolutional network processes the fused features to predict future pedestrian trajectories. Experimental results demonstrate that our method significantly outperforms existing state-of-the-art approaches, achieving ADE and FDE values of 0.252 and 0.372 meters, respectively, underscoring the importance of incorporating both social interactions and environmental context in pedestrian trajectory prediction.
Related papers
- Local and Global Contextual Features Fusion for Pedestrian Intention
Prediction [2.203209457340481]
We analyse and analyse visual features of both pedestrian and traffic contexts.
To understand the global context, we utilise location, motion, and environmental information.
These multi-modality features are intelligently fused for effective intention learning.
arXiv Detail & Related papers (2023-05-01T22:37:31Z) - Pedestrian Stop and Go Forecasting with Hybrid Feature Fusion [87.77727495366702]
We introduce the new task of pedestrian stop and go forecasting.
Considering the lack of suitable existing datasets for it, we release TRANS, a benchmark for explicitly studying the stop and go behaviors of pedestrians in urban traffic.
We build it from several existing datasets annotated with pedestrians' walking motions, in order to have various scenarios and behaviors.
arXiv Detail & Related papers (2022-03-04T18:39:31Z) - SSAGCN: Social Soft Attention Graph Convolution Network for Pedestrian
Trajectory Prediction [59.064925464991056]
We propose one new prediction model named Social Soft Attention Graph Convolution Network (SSAGCN)
SSAGCN aims to simultaneously handle social interactions among pedestrians and scene interactions between pedestrians and environments.
Experiments on public available datasets prove the effectiveness of SSAGCN and have achieved state-of-the-art results.
arXiv Detail & Related papers (2021-12-05T01:49:18Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
We present a Sparse Graph Convolution Network(SGCN) for pedestrian trajectory prediction.
Specifically, the SGCN explicitly models the sparse directed interaction with a sparse directed spatial graph to capture adaptive interaction pedestrians.
visualizations indicate that our method can capture adaptive interactions between pedestrians and their effective motion tendencies.
arXiv Detail & Related papers (2021-04-04T03:17:42Z) - Safety-Oriented Pedestrian Motion and Scene Occupancy Forecasting [91.69900691029908]
We advocate for predicting both the individual motions as well as the scene occupancy map.
We propose a Scene-Actor Graph Neural Network (SA-GNN) which preserves the relative spatial information of pedestrians.
On two large-scale real-world datasets, we showcase that our scene-occupancy predictions are more accurate and better calibrated than those from state-of-the-art motion forecasting methods.
arXiv Detail & Related papers (2021-01-07T06:08:21Z) - Graph-SIM: A Graph-based Spatiotemporal Interaction Modelling for
Pedestrian Action Prediction [10.580548257913843]
We propose a novel graph-based model for predicting pedestrian crossing action.
We introduce a new dataset that provides 3D bounding box and pedestrian behavioural annotations for the existing nuScenes dataset.
Our approach achieves state-of-the-art performance by improving on various metrics by more than 15% in comparison to existing methods.
arXiv Detail & Related papers (2020-12-03T18:28:27Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data.
We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene.
arXiv Detail & Related papers (2020-07-23T14:31:25Z) - Pedestrian Action Anticipation using Contextual Feature Fusion in
Stacked RNNs [19.13270454742958]
We propose a solution for the problem of pedestrian action anticipation at the point of crossing.
Our approach uses a novel stacked RNN architecture in which information collected from various sources, both scene dynamics and visual features, is gradually fused into the network.
arXiv Detail & Related papers (2020-05-13T20:59:37Z) - Spatiotemporal Relationship Reasoning for Pedestrian Intent Prediction [57.56466850377598]
Reasoning over visual data is a desirable capability for robotics and vision-based applications.
In this paper, we present a framework on graph to uncover relationships in different objects in the scene for reasoning about pedestrian intent.
Pedestrian intent, defined as the future action of crossing or not-crossing the street, is a very crucial piece of information for autonomous vehicles.
arXiv Detail & Related papers (2020-02-20T18:50:44Z) - Social-WaGDAT: Interaction-aware Trajectory Prediction via Wasserstein
Graph Double-Attention Network [29.289670231364788]
In this paper, we propose a generic generative neural system for multi-agent trajectory prediction.
We also employ an efficient kinematic constraint layer applied to vehicle trajectory prediction.
The proposed system is evaluated on three public benchmark datasets for trajectory prediction.
arXiv Detail & Related papers (2020-02-14T20:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.