論文の概要: A Conceptual Architecture for a Quantum-HPC Middleware
- arxiv url: http://arxiv.org/abs/2308.06608v1
- Date: Sat, 12 Aug 2023 16:48:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-15 16:23:10.648672
- Title: A Conceptual Architecture for a Quantum-HPC Middleware
- Title(参考訳): 量子HPCミドルウェアの概念アーキテクチャ
- Authors: Nishant Saurabh, Shantenu Jha and Andre Luckow
- Abstract要約: 量子コンピューティングは、古典的なコンピュータよりも高速に計算に複雑な問題を解くことによって、科学と産業の可能性を約束する。
規模が大きくなるにつれ、量子古典コンピューティングの効率的な結合を促進するシステムが重要になってきている。
- 参考スコア(独自算出の注目度): 1.82035221675293
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computing promises potential for science and industry by solving
certain computationally complex problems faster than classical computers.
Quantum computing systems evolved from monolithic systems towards modular
architectures comprising multiple quantum processing units (QPUs) coupled to
classical computing nodes (HPC). With the increasing scale, middleware systems
that facilitate the efficient coupling of quantum-classical computing are
becoming critical. Through an in-depth analysis of quantum applications,
integration patterns and systems, we identified a gap in understanding
Quantum-HPC middleware systems. We present a conceptual middleware to
facilitate reasoning about quantum-classical integration and serve as the basis
for a future middleware system. An essential contribution of this paper lies in
leveraging well-established high-performance computing abstractions for
managing workloads, tasks, and resources to integrate quantum computing into
HPC systems seamlessly.
- Abstract(参考訳): 量子コンピューティングは、古典的コンピュータよりも高速に計算的に複雑な問題を解決することで、科学や産業に可能性をもたらす。
量子コンピューティングシステムはモノリシックシステムから、複数の量子処理ユニット(QPU)と古典計算ノード(HPC)からなるモジュラーアーキテクチャへと進化した。
規模が大きくなるにつれ、量子古典コンピューティングの効率的な結合を促進するミドルウェアシステムの重要性が高まっている。
量子アプリケーション、統合パターン、システムの詳細な分析を通じて、量子-HPCミドルウェアシステムの理解のギャップを特定した。
我々は,量子古典的統合の推論を容易にするための概念的ミドルウェアを提案し,将来のミドルウェアシステムの基盤として機能する。
本稿では,HPCシステムに量子コンピューティングをシームレスに統合するために,ワークロードやタスク,リソースを管理するために確立された高性能コンピューティング抽象化を活用する上で重要な貢献である。
関連論文リスト
- Quantum Machine Learning: An Interplay Between Quantum Computing and Machine Learning [54.80832749095356]
量子機械学習(QML)は、量子コンピューティングの原理と従来の機械学習を組み合わせた急速に成長する分野である。
本稿では,変分量子回路を用いてQMLアーキテクチャを開発する機械学習パラダイムの量子コンピューティングについて述べる。
論文 参考訳(メタデータ) (2024-11-14T12:27:50Z) - Multi-GPU-Enabled Hybrid Quantum-Classical Workflow in Quantum-HPC Middleware: Applications in Quantum Simulations [1.9922905420195367]
本研究では,革新的な分散型量子古典量子アーキテクチャを提案する。
最先端の量子ソフトウェアフレームワークを高性能な古典コンピューティングリソースと統合する。
物質と凝縮物質物理学の量子シミュレーションにおける課題に対処する。
論文 参考訳(メタデータ) (2024-03-09T07:38:45Z) - Quantum Algorithm Cards: Streamlining the development of hybrid
classical-quantum applications [0.0]
量子コンピューティングの出現は、多くの科学と産業の応用領域を根本的に変換できる革命的パラダイムを提案する。
量子コンピュータが計算をスケールする能力は、現在のコンピュータが提供しているものよりも、特定のアルゴリズムタスクのパフォーマンスと効率が向上することを意味している。
このような改善の恩恵を得るためには、量子コンピュータは既存のソフトウェアシステムと統合されなければならない。
論文 参考訳(メタデータ) (2023-10-04T06:02:59Z) - Integration of Quantum Accelerators with High Performance Computing -- A
Review of Quantum Programming Tools [0.8477185635891722]
本研究の目的は、既存の量子プログラミングツール(QPT)をHPCの観点から特徴づけることである。
既存のQPTが従来の計算モデルと効率的に統合できる可能性について検討する。
この研究は、一連の基準を分析ブループリントに構造化し、量子加速古典的応用にQPTが適しているかどうかをHPC科学者が評価できるようにする。
論文 参考訳(メタデータ) (2023-09-12T12:24:12Z) - The QUATRO Application Suite: Quantum Computing for Models of Human
Cognition [49.038807589598285]
量子コンピューティング研究のための新しい種類のアプリケーション -- 計算認知モデリング -- をアンロックします。
我々は、認知モデルから量子コンピューティングアプリケーションのコレクションであるQUATROをリリースする。
論文 参考訳(メタデータ) (2023-09-01T17:34:53Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
本稿では,分散量子コンピューティング(DQC)のためのリソース割り当て方式を提案する。
本評価は,提案手法の有効性と,量子コンピュータとオンデマンド量子コンピュータの両立性を示すものである。
論文 参考訳(メタデータ) (2022-09-16T02:37:32Z) - Full-stack quantum computing systems in the NISQ era: algorithm-driven
and hardware-aware compilation techniques [1.3496450124792878]
現在のフルスタック量子コンピューティングシステムの概要について概説する。
我々は、隣接する層間の密な共設計と垂直な層間設計の必要性を強調します。
論文 参考訳(メタデータ) (2022-04-13T13:26:56Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - QSOC: Quantum Service-Oriented Computing [3.2786644738211725]
本稿ではQSOC(Quantum Service-Oriented Computing)を紹介する。
これには、エンタープライズDevOpsチームが、基礎となる量子インフラストラクチャに関する深い知識を必要とせずに、エンタープライズアプリケーションを構成、構成、運用できるようにする、モデル駆動の方法論が含まれている。
知識の再利用、関心の分離、資源最適化、および混合量子および従来のQSOC応用を提唱している。
論文 参考訳(メタデータ) (2021-05-04T09:05:10Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
本研究は、D-Wave 2000Q量子アニール上の分子電子ハミルトニアン固有値-固有ベクトル問題を解くために、一般量子アニール固有解法(QAE)アルゴリズムを実装した。
そこで本研究では,D-Waveハードウェアを用いた各種分子系における基底および電子励起状態の取得について述べる。
論文 参考訳(メタデータ) (2020-09-02T22:46:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。