論文の概要: TorchQL: A Programming Framework for Integrity Constraints in Machine Learning
- arxiv url: http://arxiv.org/abs/2308.06686v4
- Date: Wed, 16 Oct 2024 13:55:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:40:00.826643
- Title: TorchQL: A Programming Framework for Integrity Constraints in Machine Learning
- Title(参考訳): TorchQL: マシンラーニングにおける統合制約のプログラミングフレームワーク
- Authors: Aaditya Naik, Adam Stein, Yinjun Wu, Mayur Naik, Eric Wong,
- Abstract要約: 本稿では、機械学習アプリケーションの正確性を評価し改善するプログラミングフレームワークであるTorchQLを紹介する。
TorchQLを使用することで、マシンラーニングモデルやデータセットに対する整合性制約を指定およびチェックするためのクエリの記述が可能になる。
我々は、自律運転においてビデオフレーム間で検出されたオブジェクトの時間的不整合を検知するなど、多様なユースケースでTorchQLを評価する。
- 参考スコア(独自算出の注目度): 20.960438848942445
- License:
- Abstract: Finding errors in machine learning applications requires a thorough exploration of their behavior over data. Existing approaches used by practitioners are often ad-hoc and lack the abstractions needed to scale this process. We present TorchQL, a programming framework to evaluate and improve the correctness of machine learning applications. TorchQL allows users to write queries to specify and check integrity constraints over machine learning models and datasets. It seamlessly integrates relational algebra with functional programming to allow for highly expressive queries using only eight intuitive operators. We evaluate TorchQL on diverse use-cases including finding critical temporal inconsistencies in objects detected across video frames in autonomous driving, finding data imputation errors in time-series medical records, finding data labeling errors in real-world images, and evaluating biases and constraining outputs of language models. Our experiments show that TorchQL enables up to 13x faster query executions than baselines like Pandas and MongoDB, and up to 40% shorter queries than native Python. We also conduct a user study and find that TorchQL is natural enough for developers familiar with Python to specify complex integrity constraints.
- Abstract(参考訳): 機械学習アプリケーションでエラーを見つけるには、データの振る舞いを徹底的に調査する必要がある。
実践者が使用している既存のアプローチは、しばしばアドホックで、このプロセスをスケールするのに必要な抽象化が欠如している。
本稿では、機械学習アプリケーションの正確性を評価し改善するプログラミングフレームワークであるTorchQLを紹介する。
TorchQLを使用することで、マシンラーニングモデルやデータセットに対する整合性制約を指定およびチェックするためのクエリの記述が可能になる。
リレーショナル代数と関数型プログラミングをシームレスに統合し、8つの直感的演算子のみを用いて高度に表現的なクエリを可能にする。
我々は、自律運転中のビデオフレーム間で検出されたオブジェクトの時間的矛盾の発見、時系列医療記録におけるデータ計算誤差の発見、実世界の画像におけるデータのラベル付け誤りの発見、言語モデルのバイアスと制約出力の評価など、さまざまなユースケースでTorchQLを評価した。
我々の実験によると、TorchQLはPandasやMongoDBのようなベースラインよりも最大13倍高速なクエリ実行を可能にし、ネイティブPythonよりも最大40%短いクエリを実行できます。
また、ユーザスタディを実施して、TorchQLがPythonに精通している開発者にとっては、複雑な整合性制約を指定できるほど自然であることに気付きました。
関連論文リスト
- Context-Aware SQL Error Correction Using Few-Shot Learning -- A Novel Approach Based on NLQ, Error, and SQL Similarity [0.0]
本稿では,誤り訂正 insql 生成のための新しい数ショット学習手法を提案する。
与えられた自然言語質問(NLQ)に対して最も適した少数ショット誤り訂正例を選択することにより、生成されたクエリの精度を向上させる。
オープンソースデータセットを用いた実験では、単純な誤り訂正法により、誤り訂正のない修正エラーが39.2%増加し、10%増加した。
論文 参考訳(メタデータ) (2024-10-11T18:22:08Z) - BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval [54.54576644403115]
多くの複雑な実世界のクエリは、関連する文書を特定するために詳細な推論を必要とする。
BRIGHTは、関係する文書を検索するために、集中的推論を必要とする最初のテキスト検索ベンチマークである。
私たちのデータセットは、経済学、心理学、数学、コーディングなど、さまざまな領域にまたがる1,384の現実世界のクエリで構成されています。
論文 参考訳(メタデータ) (2024-07-16T17:58:27Z) - UQE: A Query Engine for Unstructured Databases [71.49289088592842]
構造化されていないデータ分析を可能にするために,大規模言語モデルの可能性を検討する。
本稿では,非構造化データ収集からの洞察を直接問合せ,抽出するUniversal Query Engine (UQE)を提案する。
論文 参考訳(メタデータ) (2024-06-23T06:58:55Z) - NL2KQL: From Natural Language to Kusto Query [1.7931930942711818]
NL2KQLは、大規模言語モデル(LLM)を使用して自然言語クエリ(NLQ)をKusto Query Language(KQL)クエリに変換する革新的なフレームワークである。
NL2KQLのパフォーマンスを検証するために、オンライン(クエリ実行に基づく)とオフライン(クエリ解析に基づく)メトリクスの配列を使用します。
論文 参考訳(メタデータ) (2024-04-03T01:09:41Z) - SPRINT: A Unified Toolkit for Evaluating and Demystifying Zero-shot
Neural Sparse Retrieval [92.27387459751309]
ニューラルスパース検索を評価するための統一PythonツールキットであるSPRINTを提供する。
我々は、よく認識されているベンチマークBEIRにおいて、強く再現可能なゼロショットスパース検索ベースラインを確立する。
SPLADEv2は、元のクエリとドキュメントの外で、ほとんどのトークンでスパース表現を生成する。
論文 参考訳(メタデータ) (2023-07-19T22:48:02Z) - Allies: Prompting Large Language Model with Beam Search [107.38790111856761]
本研究では,ALIESと呼ばれる新しい手法を提案する。
入力クエリが与えられた場合、ALLIESはLLMを活用して、元のクエリに関連する新しいクエリを反復的に生成する。
元のクエリのスコープを反復的に精錬して拡張することにより、ALLIESは直接検索できない隠れた知識をキャプチャし、利用する。
論文 参考訳(メタデータ) (2023-05-24T06:16:44Z) - Transactional Python for Durable Machine Learning: Vision, Challenges,
and Feasibility [5.669983975369642]
Pythonアプリケーションは、トレーニングされたモデルや抽出された機能などの重要なデータを失う可能性がある。
本稿では,ユーザプログラムやPythonカーネルにコード修正を加えることなくDARTを提供するトランザクショナルPythonのビジョンについて述べる。
公開PyTorchおよびScikit-learnアプリケーションによる概念実証実装の評価は、DARTが1.5%~15.6%のオーバーヘッドで提供可能であることを示している。
論文 参考訳(メタデータ) (2023-05-15T16:27:09Z) - SPARQLing Database Queries from Intermediate Question Decompositions [7.475027071883912]
自然言語の質問をデータベースクエリに変換するために、ほとんどのアプローチは、完全に注釈付けされたトレーニングセットに依存している。
データベースの中間問題表現を基盤として,この負担を軽減する。
我々のパイプラインは、自然言語質問を中間表現に変換するセマンティックと、訓練不能なトランスパイラをQLSPARクエリ言語に変換する2つの部分から構成される。
論文 参考訳(メタデータ) (2021-09-13T17:57:12Z) - pyWATTS: Python Workflow Automation Tool for Time Series [0.20315704654772418]
pyWATTSは時系列データ分析のための非シーケンスワークフロー自動化ツールである。
pyWATTSには、新しいメソッドや既存のメソッドのシームレスな統合を可能にする、明確に定義されたインターフェイスを持つモジュールが含まれている。
pyWATTSはScikit-learn、PyTorch、KerasといったPythonの機械学習ライブラリをサポートする。
論文 参考訳(メタデータ) (2021-06-18T14:50:11Z) - KILT: a Benchmark for Knowledge Intensive Language Tasks [102.33046195554886]
知識集約型言語タスク(KILT)のベンチマークを示す。
KILTのすべてのタスクはウィキペディアのスナップショットと同じだ。
共有密度ベクトル指数とSeq2seqモデルとの結合が強いベースラインであることが分かる。
論文 参考訳(メタデータ) (2020-09-04T15:32:19Z) - PyODDS: An End-to-end Outlier Detection System with Automated Machine
Learning [55.32009000204512]
PyODDSは、データベースサポート付きアウトレイラ検出のための、エンドツーエンドのPythonシステムである。
具体的には,探索空間を外乱検出パイプラインで定義し,与えられた探索空間内で探索戦略を作成する。
また、データサイエンスや機械学習のバックグラウンドの有無に関わらず、統一されたインターフェイスと視覚化を提供する。
論文 参考訳(メタデータ) (2020-03-12T03:30:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。