論文の概要: FastLLVE: Real-Time Low-Light Video Enhancement with Intensity-Aware
Lookup Table
- arxiv url: http://arxiv.org/abs/2308.06749v1
- Date: Sun, 13 Aug 2023 11:54:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-15 15:36:17.081325
- Title: FastLLVE: Real-Time Low-Light Video Enhancement with Intensity-Aware
Lookup Table
- Title(参考訳): FastLLVE: インテンシティ対応ルックアップテーブルによるリアルタイム低照度ビデオ強調
- Authors: Wenhao Li, Guangyang Wu, Wenyi Wang, Peiran Ren and Xiaohong Liu
- Abstract要約: 我々は,フレーム間輝度の一貫性を効果的に維持するために,FastLLVEという名前の効率的なパイプラインを提案する。
FastLLVEは1080pのビデオを$mathit50+$ Frames Per Second (FPS)で処理できる。
- 参考スコア(独自算出の注目度): 21.77469059123589
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low-Light Video Enhancement (LLVE) has received considerable attention in
recent years. One of the critical requirements of LLVE is inter-frame
brightness consistency, which is essential for maintaining the temporal
coherence of the enhanced video. However, most existing single-image-based
methods fail to address this issue, resulting in flickering effect that
degrades the overall quality after enhancement. Moreover, 3D Convolution Neural
Network (CNN)-based methods, which are designed for video to maintain
inter-frame consistency, are computationally expensive, making them impractical
for real-time applications. To address these issues, we propose an efficient
pipeline named FastLLVE that leverages the Look-Up-Table (LUT) technique to
maintain inter-frame brightness consistency effectively. Specifically, we
design a learnable Intensity-Aware LUT (IA-LUT) module for adaptive
enhancement, which addresses the low-dynamic problem in low-light scenarios.
This enables FastLLVE to perform low-latency and low-complexity enhancement
operations while maintaining high-quality results. Experimental results on
benchmark datasets demonstrate that our method achieves the State-Of-The-Art
(SOTA) performance in terms of both image quality and inter-frame brightness
consistency. More importantly, our FastLLVE can process 1,080p videos at
$\mathit{50+}$ Frames Per Second (FPS), which is $\mathit{2 \times}$ faster
than SOTA CNN-based methods in inference time, making it a promising solution
for real-time applications. The code is available at
https://github.com/Wenhao-Li-777/FastLLVE.
- Abstract(参考訳): 近年,低照度映像強調(LLVE)が注目されている。
LLVEの重要な要件の1つはフレーム間の輝度一貫性であり、拡張ビデオの時間的コヒーレンスを維持するのに不可欠である。
しかし、既存のsingle-imageベースのメソッドの多くはこの問題に対処できず、拡張後の全体的な品質を低下させるflickering効果をもたらす。
さらに、フレーム間の一貫性を維持するためにビデオ用に設計された3D畳み込みニューラルネットワーク(CNN)ベースの手法は計算コストが高く、リアルタイムアプリケーションでは実用的ではない。
これらの問題に対処するために,Look-Up-Table(LUT)技術を利用してフレーム間の輝度一貫性を効果的に維持する,FastLLVEと呼ばれる効率的なパイプラインを提案する。
具体的には,低照度シナリオにおける低ダイナミックな問題に対処する適応性向上のための学習可能なIA-LUT (Intensity-Aware LUT) モジュールを設計する。
これによりfastllveは、高品質な結果を維持しながら、低レイテンシと低複雑さの強化操作を実行できる。
ベンチマークデータセットにおける実験結果は,画像品質とフレーム間輝度の一貫性の両面で,最先端(sota)性能を実現することを証明している。
より重要なことに、われわれのfastllveは1,080pのビデオを1秒あたり$\mathit{50+}$ frames per second (fps)で処理することができ、これはsata cnnベースのメソッドよりも推論時に$\mathit{2 \times}$高速で、リアルタイムアプリケーションにとって有望なソリューションになります。
コードはhttps://github.com/Wenhao-Li-777/FastLLVEで公開されている。
関連論文リスト
- SparseTem: Boosting the Efficiency of CNN-Based Video Encoders by Exploiting Temporal Continuity [15.872209884833977]
本稿では,メモリオーバーヘッドを削減するためのメモリ効率スケジューリング手法と,精度の劣化を最小限に抑えるためのオンライン調整機構を提案する。
SparseTemは効率の良いDetでは1.79x、CRNNでは4.72xの高速化を実現している。
論文 参考訳(メタデータ) (2024-10-28T07:13:25Z) - Data Overfitting for On-Device Super-Resolution with Dynamic Algorithm and Compiler Co-Design [18.57172631588624]
本稿では,Content-Awareデータ処理パイプラインが支援する動的ディープニューラルネットワークを提案する。
本手法は,市販携帯電話上でのPSNRとリアルタイム性能(33FPS)の向上を実現する。
論文 参考訳(メタデータ) (2024-07-03T05:17:26Z) - Binarized Low-light Raw Video Enhancement [49.65466843856074]
ディープニューラルネットワークは、低照度生ビデオの強化において優れたパフォーマンスを実現している。
本稿では,低照度生ビデオエンハンスメントに超コンパクトなバイナリニューラルネットワーク(BNN)を適用する可能性について検討する。
論文 参考訳(メタデータ) (2024-03-29T02:55:07Z) - Scalable Neural Video Representations with Learnable Positional Features [73.51591757726493]
我々は,学習可能な位置特徴(NVP)を用いて,映像を潜時符号として効果的に再生するニューラル表現の訓練方法を示す。
一般的なUVGベンチマークにおけるNVPの優位性を実証し,先行技術と比較して,NVPは2倍の速度(5分以内)で走行するだけでなく,符号化品質も34.07rightarrow$34.57(PSNR測定値で測定)に上回っている。
論文 参考訳(メタデータ) (2022-10-13T08:15:08Z) - Deep Parametric 3D Filters for Joint Video Denoising and Illumination
Enhancement in Video Super Resolution [96.89588203312451]
本稿では,Deep Parametric 3D Filters (DP3DF) と呼ばれる新しいパラメトリック表現を提案する。
DP3DFは、ローカル情報を組み込んで、単一エンコーダ/デコーダネットワークにおいて、同時復調、照明強化、SRを効率的に実現している。
また、動的残留フレームを共有バックボーンを介してDP3DFと共同で学習し、SR品質をさらに向上させる。
論文 参考訳(メタデータ) (2022-07-05T03:57:25Z) - Investigating Tradeoffs in Real-World Video Super-Resolution [90.81396836308085]
実世界のビデオ超解像(VSR)モデルは、一般化性を改善するために様々な劣化で訓練されることが多い。
最初のトレードオフを軽減するために,性能を犠牲にすることなく,最大40%のトレーニング時間を削減できる劣化手法を提案する。
そこで本研究では,多種多様な実世界の低品質映像系列を含むビデオLQデータセットを提案する。
論文 参考訳(メタデータ) (2021-11-24T18:58:21Z) - Efficient Spatio-Temporal Recurrent Neural Network for Video Deblurring [39.63844562890704]
リアルタイムの劣化は、空間的および時間的に変化するぼやけ自体の複雑さのため、依然として困難な課題である。
我々はRNN細胞に残留密度ブロックを適用して、現在のフレームの空間的特徴を効率的に抽出する。
我々は、コ軸ビームスプリッタ取得システムを用いて、ペア/シャープのビデオクリップを収集し、新しいデータセット(BSD)をコミュニティにコントリビュートする。
論文 参考訳(メタデータ) (2021-06-30T12:53:02Z) - Low-Fidelity End-to-End Video Encoder Pre-training for Temporal Action
Localization [96.73647162960842]
TALはビデオ理解の基本的な課題だが、難しい課題だ。
既存のtalメソッドは、アクション分類の監督を通じてビデオエンコーダを事前トレーニングする。
本稿では,ローファイダリティ・エンド・ツー・エンド(LoFi)ビデオエンコーダの事前学習手法を提案する。
論文 参考訳(メタデータ) (2021-03-28T22:18:14Z) - Deep Space-Time Video Upsampling Networks [47.62807427163614]
ビデオ超解像(VSR)とフレーム(FI)は伝統的なコンピュータビジョンの問題である。
本稿では, VSR と FI を効率よく融合して, 時空ビデオアップサンプリングを行うためのエンドツーエンドフレームワークを提案する。
その結果, 時間(x7速)とパラメータ数(30%)を基準線と比較し, 定量的, 質的にも良好な結果が得られた。
論文 参考訳(メタデータ) (2020-04-06T07:04:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。