SAILOR: Structural Augmentation Based Tail Node Representation Learning
- URL: http://arxiv.org/abs/2308.06801v2
- Date: Tue, 15 Aug 2023 01:08:11 GMT
- Title: SAILOR: Structural Augmentation Based Tail Node Representation Learning
- Authors: Jie Liao, Jintang Li, Liang Chen, Bingzhe Wu, Yatao Bian, Zibin Zheng
- Abstract summary: Graph Neural Networks (GNNs) have achieved state-of-the-art performance in representation learning for graphs recently.
Most of the graphs in real-world scenarios follow a long-tailed distribution on their node degrees, that is, a vast majority of the nodes in the graph are tail nodes with only a few connected edges.
We propose a general Structural Augmentation based taIL nOde Representation learning framework, dubbed as SAILOR, which can jointly learn to augment the graph structure and extract more informative representations for tail nodes.
- Score: 49.19653803667422
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have achieved state-of-the-art performance in
representation learning for graphs recently. However, the effectiveness of
GNNs, which capitalize on the key operation of message propagation, highly
depends on the quality of the topology structure. Most of the graphs in
real-world scenarios follow a long-tailed distribution on their node degrees,
that is, a vast majority of the nodes in the graph are tail nodes with only a
few connected edges. GNNs produce inferior node representations for tail nodes
since they lack structural information. In the pursuit of promoting the
expressiveness of GNNs for tail nodes, we explore how the deficiency of
structural information deteriorates the performance of tail nodes and propose a
general Structural Augmentation based taIL nOde Representation learning
framework, dubbed as SAILOR, which can jointly learn to augment the graph
structure and extract more informative representations for tail nodes.
Extensive experiments on public benchmark datasets demonstrate that SAILOR can
significantly improve the tail node representations and outperform the
state-of-the-art baselines.
Related papers
- MDS-GNN: A Mutual Dual-Stream Graph Neural Network on Graphs with Incomplete Features and Structure [8.00268216176428]
Graph Neural Networks (GNNs) have emerged as powerful tools for analyzing and learning representations from graph-structured data.
A crucial prerequisite for the outstanding performance of GNNs is the availability of complete graph information.
This study proposes a mutual dual-stream graph neural network (MDS-GNN) which implements a mutual benefit learning between features and structure.
arXiv Detail & Related papers (2024-08-09T03:42:56Z) - Harnessing Collective Structure Knowledge in Data Augmentation for Graph Neural Networks [25.12261412297796]
Graph neural networks (GNNs) have achieved state-of-the-art performance in graph representation learning.
We propose a novel approach, namely collective structure knowledge-augmented graph neural network (CoS-GNN)
arXiv Detail & Related papers (2024-05-17T08:50:00Z) - Self-Attention Empowered Graph Convolutional Network for Structure
Learning and Node Embedding [5.164875580197953]
In representation learning on graph-structured data, many popular graph neural networks (GNNs) fail to capture long-range dependencies.
This paper proposes a novel graph learning framework called the graph convolutional network with self-attention (GCN-SA)
The proposed scheme exhibits an exceptional generalization capability in node-level representation learning.
arXiv Detail & Related papers (2024-03-06T05:00:31Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - GraphRARE: Reinforcement Learning Enhanced Graph Neural Network with Relative Entropy [21.553180564868306]
GraphRARE is a framework built upon node relative entropy and deep reinforcement learning.
An innovative node relative entropy is used to measure mutual information between node pairs.
A deep reinforcement learning-based algorithm is developed to optimize the graph topology.
arXiv Detail & Related papers (2023-12-15T11:30:18Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
We propose a novel heterogeneous graph neural network with sequential node representation, namely Seq-HGNN.
We conduct extensive experiments on four widely used datasets from Heterogeneous Graph Benchmark (HGB) and Open Graph Benchmark (OGB)
arXiv Detail & Related papers (2023-05-18T07:27:18Z) - Structure Enhanced Graph Neural Networks for Link Prediction [6.872826041648584]
We propose Structure Enhanced Graph neural network (SEG) for link prediction.
SEG incorporates surrounding topological information of target nodes into an ordinary GNN model.
Experiments on the OGB link prediction datasets demonstrate that SEG achieves state-of-the-art results.
arXiv Detail & Related papers (2022-01-14T03:49:30Z) - Uniting Heterogeneity, Inductiveness, and Efficiency for Graph
Representation Learning [68.97378785686723]
graph neural networks (GNNs) have greatly advanced the performance of node representation learning on graphs.
A majority class of GNNs are only designed for homogeneous graphs, leading to inferior adaptivity to the more informative heterogeneous graphs.
We propose a novel inductive, meta path-free message passing scheme that packs up heterogeneous node features with their associated edges from both low- and high-order neighbor nodes.
arXiv Detail & Related papers (2021-04-04T23:31:39Z) - Graph Inference Learning for Semi-supervised Classification [50.55765399527556]
We propose a Graph Inference Learning framework to boost the performance of semi-supervised node classification.
For learning the inference process, we introduce meta-optimization on structure relations from training nodes to validation nodes.
Comprehensive evaluations on four benchmark datasets demonstrate the superiority of our proposed GIL when compared against state-of-the-art methods.
arXiv Detail & Related papers (2020-01-17T02:52:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.