Ground Manipulator Primitive Tasks to Executable Actions using Large
Language Models
- URL: http://arxiv.org/abs/2308.06810v2
- Date: Sun, 1 Oct 2023 03:31:02 GMT
- Title: Ground Manipulator Primitive Tasks to Executable Actions using Large
Language Models
- Authors: Yue Cao and C.S. George Lee
- Abstract summary: We propose a novel approach to ground the manipulator primitive tasks to robot low-level actions using large language models (LLMs)
In this way, we enable LLMs to generate position/force set-points for hybrid control.
- Score: 13.827349677538352
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Layered architectures have been widely used in robot systems. The majority of
them implement planning and execution functions in separate layers. However,
there still lacks a straightforward way to transit high-level tasks in the
planning layer to the low-level motor commands in the execution layer. In order
to tackle this challenge, we propose a novel approach to ground the manipulator
primitive tasks to robot low-level actions using large language models (LLMs).
We designed a program-function-like prompt based on the task frame formalism.
In this way, we enable LLMs to generate position/force set-points for hybrid
control. Evaluations over several state-of-the-art LLMs are provided.
Related papers
- MALMM: Multi-Agent Large Language Models for Zero-Shot Robotics Manipulation [52.739500459903724]
Large Language Models (LLMs) have demonstrated remarkable planning abilities across various domains, including robotics manipulation and navigation.
We propose a novel multi-agent LLM framework that distributes high-level planning and low-level control code generation across specialized LLM agents.
We evaluate our approach on nine RLBench tasks, including long-horizon tasks, and demonstrate its ability to solve robotics manipulation in a zero-shot setting.
arXiv Detail & Related papers (2024-11-26T17:53:44Z) - Scaling Up Natural Language Understanding for Multi-Robots Through the Lens of Hierarchy [8.180994118420053]
Long-horizon planning is hindered by challenges such as uncertainty accumulation, computational complexity, delayed rewards and incomplete information.
This work proposes an approach to exploit the task hierarchy from human instructions to facilitate multi-robot planning.
arXiv Detail & Related papers (2024-08-15T14:46:13Z) - From LLMs to Actions: Latent Codes as Bridges in Hierarchical Robot Control [58.72492647570062]
We introduce our method -- Learnable Latent Codes as Bridges (LCB) -- as an alternate architecture to overcome limitations.
We find that methodoutperforms baselines that leverage pure language as the interface layer on tasks that require reasoning and multi-step behaviors.
arXiv Detail & Related papers (2024-05-08T04:14:06Z) - Plan-Seq-Learn: Language Model Guided RL for Solving Long Horizon Robotics Tasks [50.27313829438866]
Plan-Seq-Learn (PSL) is a modular approach that uses motion planning to bridge the gap between abstract language and learned low-level control.
PSL achieves success rates of over 85%, out-performing language-based, classical, and end-to-end approaches.
arXiv Detail & Related papers (2024-05-02T17:59:31Z) - Empowering Large Language Models on Robotic Manipulation with Affordance Prompting [23.318449345424725]
Large language models fail to interact with the physical world by generating control sequences properly.
Existing LLM-based approaches circumvent this problem by relying on additional pre-defined skills or pre-trained sub-policies.
We propose a framework called LLM+A(ffordance) where the LLM serves as both the sub-task planner and the motion controller.
arXiv Detail & Related papers (2024-04-17T03:06:32Z) - LoHoRavens: A Long-Horizon Language-Conditioned Benchmark for Robotic
Tabletop Manipulation [38.66406497318709]
This work focuses on the tabletop manipulation task and releases a simulation benchmark, textitLoHoRavens, which covers various long-horizon reasoning aspects spanning color, size, space, arithmetics and reference.
We investigate two methods of bridging the modality gap: caption generation and learnable interface for incorporating explicit and implicit observation feedback to the LLM.
arXiv Detail & Related papers (2023-10-18T14:53:14Z) - DoReMi: Grounding Language Model by Detecting and Recovering from Plan-Execution Misalignment [10.322491116030825]
DoReMi enables Detection and Recovery from Misalignments between plan and execution.
Our pipeline can monitor the low-level execution and enable timely recovery if certain plan-execution misalignment occurs.
arXiv Detail & Related papers (2023-07-01T12:51:02Z) - AutoTAMP: Autoregressive Task and Motion Planning with LLMs as Translators and Checkers [20.857692296678632]
For effective human-robot interaction, robots need to understand, plan, and execute complex, long-horizon tasks.
Recent advances in large language models have shown promise for translating natural language into robot action sequences.
We show that our approach outperforms several methods using LLMs as planners in complex task domains.
arXiv Detail & Related papers (2023-06-10T21:58:29Z) - Plan, Eliminate, and Track -- Language Models are Good Teachers for
Embodied Agents [99.17668730578586]
Pre-trained large language models (LLMs) capture procedural knowledge about the world.
Plan, Eliminate, and Track (PET) framework translates a task description into a list of high-level sub-tasks.
PET framework leads to a significant 15% improvement over SOTA for generalization to human goal specifications.
arXiv Detail & Related papers (2023-05-03T20:11:22Z) - ProgPrompt: Generating Situated Robot Task Plans using Large Language
Models [68.57918965060787]
Large language models (LLMs) can be used to score potential next actions during task planning.
We present a programmatic LLM prompt structure that enables plan generation functional across situated environments.
arXiv Detail & Related papers (2022-09-22T20:29:49Z) - Procedures as Programs: Hierarchical Control of Situated Agents through
Natural Language [81.73820295186727]
We propose a formalism of procedures as programs, a powerful yet intuitive method of representing hierarchical procedural knowledge for agent command and control.
We instantiate this framework on the IQA and ALFRED datasets for NL instruction following.
arXiv Detail & Related papers (2021-09-16T20:36:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.