Effect of Choosing Loss Function when Using T-batching for
Representation Learning on Dynamic Networks
- URL: http://arxiv.org/abs/2308.06862v1
- Date: Sun, 13 Aug 2023 23:34:36 GMT
- Title: Effect of Choosing Loss Function when Using T-batching for
Representation Learning on Dynamic Networks
- Authors: Erfan Loghmani, MohammadAmin Fazli
- Abstract summary: T-batching is a valuable technique for training dynamic network models.
We have identified a limitation in the training loss function used with t-batching.
We propose two alternative loss functions that overcome these issues, resulting in enhanced training performance.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Representation learning methods have revolutionized machine learning on
networks by converting discrete network structures into continuous domains.
However, dynamic networks that evolve over time pose new challenges. To address
this, dynamic representation learning methods have gained attention, offering
benefits like reduced learning time and improved accuracy by utilizing temporal
information.
T-batching is a valuable technique for training dynamic network models that
reduces training time while preserving vital conditions for accurate modeling.
However, we have identified a limitation in the training loss function used
with t-batching. Through mathematical analysis, we propose two alternative loss
functions that overcome these issues, resulting in enhanced training
performance.
We extensively evaluate the proposed loss functions on synthetic and
real-world dynamic networks. The results consistently demonstrate superior
performance compared to the original loss function. Notably, in a real-world
network characterized by diverse user interaction histories, the proposed loss
functions achieved more than 26.9% enhancement in Mean Reciprocal Rank (MRR)
and more than 11.8% improvement in Recall@10. These findings underscore the
efficacy of the proposed loss functions in dynamic network modeling.
Related papers
- Dynamical loss functions shape landscape topography and improve learning in artificial neural networks [0.9208007322096533]
We show how to transform cross-entropy and mean squared error into dynamical loss functions.
We show how they significantly improve validation accuracy for networks of varying sizes.
arXiv Detail & Related papers (2024-10-14T16:27:03Z) - Gradient Transformation: Towards Efficient and Model-Agnostic Unlearning for Dynamic Graph Neural Networks [66.70786325911124]
Graph unlearning has emerged as an essential tool for safeguarding user privacy and mitigating the negative impacts of undesirable data.
With the increasing prevalence of DGNNs, it becomes imperative to investigate the implementation of dynamic graph unlearning.
We propose an effective, efficient, model-agnostic, and post-processing method to implement DGNN unlearning.
arXiv Detail & Related papers (2024-05-23T10:26:18Z) - On the weight dynamics of learning networks [0.0]
We derive equations for the tangent operator of the learning dynamics of three-layer networks learning regression tasks.
Applying the results to a network learning a regression task, we investigate numerically, how stability indicators relate to the final training-loss.
arXiv Detail & Related papers (2024-04-30T06:12:21Z) - Disentangling the Causes of Plasticity Loss in Neural Networks [55.23250269007988]
We show that loss of plasticity can be decomposed into multiple independent mechanisms.
We show that a combination of layer normalization and weight decay is highly effective at maintaining plasticity in a variety of synthetic nonstationary learning tasks.
arXiv Detail & Related papers (2024-02-29T00:02:33Z) - Online Loss Function Learning [13.744076477599707]
Loss function learning aims to automate the task of designing a loss function for a machine learning model.
We propose a new loss function learning technique for adaptively updating the loss function online after each update to the base model parameters.
arXiv Detail & Related papers (2023-01-30T19:22:46Z) - Learning in Feedback-driven Recurrent Spiking Neural Networks using
full-FORCE Training [4.124948554183487]
We propose a supervised training procedure for RSNNs, where a second network is introduced only during the training.
The proposed training procedure consists of generating targets for both recurrent and readout layers.
We demonstrate the improved performance and noise robustness of the proposed full-FORCE training procedure to model 8 dynamical systems.
arXiv Detail & Related papers (2022-05-26T19:01:19Z) - Improving Music Performance Assessment with Contrastive Learning [78.8942067357231]
This study investigates contrastive learning as a potential method to improve existing MPA systems.
We introduce a weighted contrastive loss suitable for regression tasks applied to a convolutional neural network.
Our results show that contrastive-based methods are able to match and exceed SoTA performance for MPA regression tasks.
arXiv Detail & Related papers (2021-08-03T19:24:25Z) - Incremental Embedding Learning via Zero-Shot Translation [65.94349068508863]
Current state-of-the-art incremental learning methods tackle catastrophic forgetting problem in traditional classification networks.
We propose a novel class-incremental method for embedding network, named as zero-shot translation class-incremental method (ZSTCI)
In addition, ZSTCI can easily be combined with existing regularization-based incremental learning methods to further improve performance of embedding networks.
arXiv Detail & Related papers (2020-12-31T08:21:37Z) - Adversarial Training Reduces Information and Improves Transferability [81.59364510580738]
Recent results show that features of adversarially trained networks for classification, in addition to being robust, enable desirable properties such as invertibility.
We show that the Adversarial Training can improve linear transferability to new tasks, from which arises a new trade-off between transferability of representations and accuracy on the source task.
arXiv Detail & Related papers (2020-07-22T08:30:16Z) - Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve
Adversarial Robustness [79.47619798416194]
Learn2Perturb is an end-to-end feature perturbation learning approach for improving the adversarial robustness of deep neural networks.
Inspired by the Expectation-Maximization, an alternating back-propagation training algorithm is introduced to train the network and noise parameters consecutively.
arXiv Detail & Related papers (2020-03-02T18:27:35Z) - Cooperative Initialization based Deep Neural Network Training [35.14235994478142]
Our approach uses multiple activation functions in the initial few epochs for the update of all sets of weight parameters while training the network.
Our approach outperforms various baselines and, at the same time, performs well over various tasks such as classification and detection.
arXiv Detail & Related papers (2020-01-05T14:08:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.