論文の概要: A One Stop 3D Target Reconstruction and multilevel Segmentation Method
- arxiv url: http://arxiv.org/abs/2308.06974v1
- Date: Mon, 14 Aug 2023 07:12:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-15 14:06:07.604414
- Title: A One Stop 3D Target Reconstruction and multilevel Segmentation Method
- Title(参考訳): ワンストップ3次元ターゲット再構成とマルチレベルセグメンテーション法
- Authors: Jiexiong Xu, Weikun Zhao, Zhiyan Tang and Xiangchao Gan
- Abstract要約: オープンソースのワンストップ3Dターゲット再構成とマルチレベルセグメンテーションフレームワーク(OSTRA)を提案する。
OSTRAは2D画像上でセグメンテーションを行い、画像シーケンス内のセグメンテーションラベルで複数のインスタンスを追跡し、ラベル付き3Dオブジェクトまたは複数のパーツをMulti-View Stereo(MVS)またはRGBDベースの3D再構成手法で再構成する。
本手法は,複雑なシーンにおいて,リッチなマルチスケールセグメンテーション情報に埋め込まれた3次元ターゲットを再構築するための新たな道を開く。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: 3D object reconstruction and multilevel segmentation are fundamental to
computer vision research. Existing algorithms usually perform 3D scene
reconstruction and target objects segmentation independently, and the
performance is not fully guaranteed due to the challenge of the 3D
segmentation. Here we propose an open-source one stop 3D target reconstruction
and multilevel segmentation framework (OSTRA), which performs segmentation on
2D images, tracks multiple instances with segmentation labels in the image
sequence, and then reconstructs labelled 3D objects or multiple parts with
Multi-View Stereo (MVS) or RGBD-based 3D reconstruction methods. We extend
object tracking and 3D reconstruction algorithms to support continuous
segmentation labels to leverage the advances in the 2D image segmentation,
especially the Segment-Anything Model (SAM) which uses the pretrained neural
network without additional training for new scenes, for 3D object segmentation.
OSTRA supports most popular 3D object models including point cloud, mesh and
voxel, and achieves high performance for semantic segmentation, instance
segmentation and part segmentation on several 3D datasets. It even surpasses
the manual segmentation in scenes with complex structures and occlusions. Our
method opens up a new avenue for reconstructing 3D targets embedded with rich
multi-scale segmentation information in complex scenes. OSTRA is available from
https://github.com/ganlab/OSTRA.
- Abstract(参考訳): 3次元オブジェクト再構成とマルチレベルセグメンテーションは、コンピュータビジョン研究の基本である。
既存のアルゴリズムは、通常、3Dシーンの再構成とターゲットオブジェクトのセグメンテーションを独立に行うが、3Dセグメンテーションの課題のため、性能が完全に保証されない。
本稿では,2次元画像上でセグメンテーションを行い,セグメンテーションラベル付き複数インスタンスを追跡し,マルチビューステレオ(mvs)またはrgbdベースの3次元再構成手法を用いてラベル付き3dオブジェクトまたは複数の部品を再構成する,オープンソースのone stop 3d target reconstruction and multilevel segmentation framework(ostra)を提案する。
オブジェクト追跡と3D再構成アルゴリズムを拡張して、連続的なセグメンテーションラベルをサポートし、2D画像セグメンテーションの進歩、特に3Dオブジェクトセグメンテーションのために、新たなシーンのトレーニングをすることなく事前トレーニングされたニューラルネットワークを使用するSegment-Anything Model(SAM)を活用する。
OSTRAは、ポイントクラウド、メッシュ、ボクセルを含む最も人気のある3Dオブジェクトモデルをサポートし、セマンティックセグメンテーション、インスタンスセグメンテーション、いくつかの3Dデータセットの部分セグメンテーションの高性能を実現する。
複雑な構造と隠蔽のシーンで手動のセグメンテーションを超越している。
提案手法は,複雑なシーンにリッチなマルチスケールセグメンテーション情報を埋め込んだ3次元ターゲットを再構成するための新しい道を開く。
OSTRAはhttps://github.com/ganlab/OSTRAから入手できる。
関連論文リスト
- SAMPart3D: Segment Any Part in 3D Objects [23.97392239910013]
3D部分のセグメンテーションは、3D知覚において重要な課題であり、ロボット工学、3D生成、および3D編集などのアプリケーションにおいて重要な役割を果たす。
最近の手法では、2次元から3次元の知識蒸留に強力なビジョン言語モデル(VLM)を用いており、ゼロショットの3次元部分分割を実現している。
本研究では,任意の3Dオブジェクトを複数の粒度のセマンティックな部分に分割する,スケーラブルなゼロショット3D部分分割フレームワークであるSAMPart3Dを紹介する。
論文 参考訳(メタデータ) (2024-11-11T17:59:10Z) - 3D-GRES: Generalized 3D Referring Expression Segmentation [77.10044505645064]
3D参照式(3D-RES)は、自然言語の記述に基づいて、特定のインスタンスを3D空間内にセグメント化することを目的としている。
一般化された3D参照式(3D-GRES)は、自然言語命令に基づいて任意の数のインスタンスをセグメントする機能を拡張する。
論文 参考訳(メタデータ) (2024-07-30T08:59:05Z) - MeshSegmenter: Zero-Shot Mesh Semantic Segmentation via Texture Synthesis [27.703204488877038]
MeshSegmenterは、ゼロショット3Dセマンティックセグメンテーション用に設計されたフレームワークである。
さまざまなメッシュとセグメント記述の正確な3Dセグメンテーションを提供する。
論文 参考訳(メタデータ) (2024-07-18T16:50:59Z) - 3x2: 3D Object Part Segmentation by 2D Semantic Correspondences [33.99493183183571]
本稿では,いくつかのアノテーション付き3D形状やリッチアノテーション付き2Dデータセットを活用して3Dオブジェクト部分のセグメンテーションを実現することを提案する。
我々は,様々な粒度レベルのベンチマークでSOTA性能を実現する3-By-2という新しい手法を提案する。
論文 参考訳(メタデータ) (2024-07-12T19:08:00Z) - Part123: Part-aware 3D Reconstruction from a Single-view Image [54.589723979757515]
Part123は、一視点画像から部分認識された3D再構成のための新しいフレームワークである。
ニューラルレンダリングフレームワークにコントラスト学習を導入し、部分認識機能空間を学習する。
クラスタリングに基づくアルゴリズムも開発され、再構成されたモデルから3次元部分分割結果を自動的に導出する。
論文 参考訳(メタデータ) (2024-05-27T07:10:21Z) - SAI3D: Segment Any Instance in 3D Scenes [68.57002591841034]
新規なゼロショット3Dインスタンスセグメンテーション手法であるSAI3Dを紹介する。
我々の手法は3Dシーンを幾何学的プリミティブに分割し、段階的に3Dインスタンスセグメンテーションにマージする。
ScanNet、Matterport3D、さらに難しいScanNet++データセットに関する実証的な評価は、我々のアプローチの優位性を示している。
論文 参考訳(メタデータ) (2023-12-17T09:05:47Z) - SAM-guided Graph Cut for 3D Instance Segmentation [60.75119991853605]
本稿では,3次元画像情報と多視点画像情報の同時利用による3次元インスタンス分割の課題に対処する。
本稿では,3次元インスタンスセグメンテーションのための2次元セグメンテーションモデルを効果的に活用する新しい3D-to-2Dクエリフレームワークを提案する。
本手法は,ロバストなセグメンテーション性能を実現し,異なるタイプのシーンにまたがる一般化を実現する。
論文 参考訳(メタデータ) (2023-12-13T18:59:58Z) - DatasetNeRF: Efficient 3D-aware Data Factory with Generative Radiance Fields [68.94868475824575]
本稿では,無限で高品質な3Dアノテーションを3Dポイントクラウドセグメンテーションとともに生成できる新しいアプローチを提案する。
我々は3次元生成モデルに先立って強力なセマンティクスを活用してセマンティクスデコーダを訓練する。
トレーニングが完了すると、デコーダは遅延空間を効率よく一般化し、無限のデータの生成を可能にする。
論文 参考訳(メタデータ) (2023-11-18T21:58:28Z) - ONeRF: Unsupervised 3D Object Segmentation from Multiple Views [59.445957699136564]
OneRFは、追加のマニュアルアノテーションなしで、マルチビューのRGBイメージから3Dのオブジェクトインスタンスを自動的に分割し、再構成する手法である。
セグメント化された3Dオブジェクトは、様々な3Dシーンの編集と新しいビューレンダリングを可能にする別個のNeRF(Neural Radiance Fields)を使用して表現される。
論文 参考訳(メタデータ) (2022-11-22T06:19:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。