論文の概要: Bayesian Flow Networks
- arxiv url: http://arxiv.org/abs/2308.07037v4
- Date: Mon, 27 Nov 2023 16:15:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-30 15:10:39.219332
- Title: Bayesian Flow Networks
- Title(参考訳): ベイズ流ネットワーク
- Authors: Alex Graves, Rupesh Kumar Srivastava, Timothy Atkinson, Faustino Gomez
- Abstract要約: 本稿では,ベイジアン・フロー・ネットワーク(BFN)について述べる。ベイジアン・フロー・ネットワーク(BFN)は,独立分布の集合のパラメータをベイジアン推論で修正した新しい生成モデルである。
単純な事前および反復的な2つの分布の更新から始めると、拡散モデルの逆過程に似た生成手順が得られる。
BFNは動的にバイナライズされたMNISTとCIFAR-10で画像モデリングを行うために競合するログライクフレーションを実現し、text8文字レベルの言語モデリングタスクにおいて既知のすべての離散拡散モデルより優れている。
- 参考スコア(独自算出の注目度): 4.585102332532472
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces Bayesian Flow Networks (BFNs), a new class of
generative model in which the parameters of a set of independent distributions
are modified with Bayesian inference in the light of noisy data samples, then
passed as input to a neural network that outputs a second, interdependent
distribution. Starting from a simple prior and iteratively updating the two
distributions yields a generative procedure similar to the reverse process of
diffusion models; however it is conceptually simpler in that no forward process
is required. Discrete and continuous-time loss functions are derived for
continuous, discretised and discrete data, along with sample generation
procedures. Notably, the network inputs for discrete data lie on the
probability simplex, and are therefore natively differentiable, paving the way
for gradient-based sample guidance and few-step generation in discrete domains
such as language modelling. The loss function directly optimises data
compression and places no restrictions on the network architecture. In our
experiments BFNs achieve competitive log-likelihoods for image modelling on
dynamically binarized MNIST and CIFAR-10, and outperform all known discrete
diffusion models on the text8 character-level language modelling task.
- Abstract(参考訳): 本稿では,独立した分布の集合のパラメータを,ノイズデータサンプルに照らしてベイズ推論によって修正し,第2の相互依存分布を出力するニューラルネットワークに入力として渡す,新たな階層生成モデルであるベイズフローネットワーク(bfns)を提案する。
単純な事前および反復的に2つの分布を更新することから、拡散モデルの逆過程に類似した生成手順が得られるが、前方過程を必要としないという概念的には単純である。
離散時間および連続時間損失関数は、サンプル生成手順とともに、連続、離散化、離散データに対して導出される。
特に、離散データに対するネットワーク入力は確率単純度に基づいており、したがってネイティブに微分可能であり、勾配に基づくサンプルガイダンスや言語モデリングのような離散領域における数ステップ生成の道を開く。
損失関数はデータ圧縮を直接最適化し、ネットワークアーキテクチャに制限を課さない。
実験では,動的二項化MNISTとCIFAR-10を用いた画像モデリングにおいて,BFNは競合する対数類似度を実現し,テキスト8文字レベルの言語モデリングタスクにおいて,既知の離散拡散モデルよりも優れていた。
関連論文リスト
- Constrained Diffusion Models via Dual Training [80.03953599062365]
拡散プロセスは、トレーニングデータセットのバイアスを反映したサンプルを生成する傾向がある。
所望の分布に基づいて拡散制約を付与し,制約付き拡散モデルを構築する。
本稿では,制約付き拡散モデルを用いて,目的と制約の最適なトレードオフを実現する混合データ分布から新しいデータを生成することを示す。
論文 参考訳(メタデータ) (2024-08-27T14:25:42Z) - Discrete Flow Matching [74.04153927689313]
本稿では,離散データ生成に特化して設計された新しい離散フローパラダイムを提案する。
我々のアプローチは、非自己回帰的な方法で高品質な離散データを生成することができる。
論文 参考訳(メタデータ) (2024-07-22T12:33:27Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
拡散に基づく生成モデルは微分方程式を用いて、複素データ分布と抽出可能な事前分布の間の滑らかな接続を確立する。
本稿では,拡散モデルのODEに基づくサンプリングプロセスにおいて,いくつかの興味深い軌道特性を同定する。
論文 参考訳(メタデータ) (2024-05-18T15:59:41Z) - Uncertainty quantification and out-of-distribution detection using
surjective normalizing flows [46.51077762143714]
本稿では,深層ニューラルネットワークモデルにおける分布外データセットの探索的正規化フローを用いた簡単なアプローチを提案する。
本手法は, 流通外データと流通内データとを確実に識別できることを示す。
論文 参考訳(メタデータ) (2023-11-01T09:08:35Z) - Joint Bayesian Inference of Graphical Structure and Parameters with a
Single Generative Flow Network [59.79008107609297]
本稿では,ベイジアンネットワークの構造上の結合後部を近似する手法を提案する。
サンプリングポリシが2フェーズプロセスに従う単一のGFlowNetを使用します。
パラメータは後部分布に含まれるため、これは局所確率モデルに対してより柔軟である。
論文 参考訳(メタデータ) (2023-05-30T19:16:44Z) - The Score-Difference Flow for Implicit Generative Modeling [1.309716118537215]
Inlicit Generative Modelingは、対象データ分布と一致する合成データのサンプルを作成することを目的としている。
最近の研究は、合成音源データをターゲット分布へプッシュする観点から、IGG問題にアプローチしている。
任意のターゲット分布とソース分布のスコア差を,Kulback-Leibler分散を最適に低減するフローとして提示する。
論文 参考訳(メタデータ) (2023-04-25T15:21:12Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
連続時間マルコフ連鎖を介して逆過程が認知されるマルコフジャンププロセスを導入することにより、拡散モデルを離散変数に拡張する。
条件境界分布の単純なマッチングにより、偏りのない推定器が得られることを示す。
提案手法の有効性を,合成および実世界の音楽と画像のベンチマークで示す。
論文 参考訳(メタデータ) (2022-11-30T05:33:29Z) - From Points to Functions: Infinite-dimensional Representations in
Diffusion Models [23.916417852496608]
拡散に基づく生成モデルは、非構造的雑音を複雑な対象分布に反復的に伝達することを学ぶ。
異なる時間ステップからの情報コンテンツを組み合わせることで、下流のタスクをより正確に表現できることが示される。
論文 参考訳(メタデータ) (2022-10-25T05:30:53Z) - Discrete Denoising Flows [87.44537620217673]
分類的確率変数に対する離散的フローベースモデル(DDF)を提案する。
他の離散フローベースモデルとは対照的に、我々のモデルは勾配バイアスを導入することなく局所的に訓練することができる。
そこで本研究では, DDFs が離散フローより優れていることを示し, 対数類似度で測定した2値MNIST と Cityscapes のセグメンテーションマップをモデル化した。
論文 参考訳(メタデータ) (2021-07-24T14:47:22Z) - Variational Mixture of Normalizing Flows [0.0]
生成逆数ネットワークオートサイトGAN、変分オートエンコーダオートサイトベイペーパー、およびそれらの変種などの深い生成モデルは、複雑なデータ分布をモデル化するタスクに広く採用されている。
正規化フローはこの制限を克服し、確率密度関数にそのような公式の変更を利用する。
本研究は,混合モデルのコンポーネントとして正規化フローを用い,そのようなモデルのエンドツーエンドトレーニング手順を考案することによって,この問題を克服する。
論文 参考訳(メタデータ) (2020-09-01T17:20:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。