UIPC-MF: User-Item Prototype Connection Matrix Factorization for
Explainable Collaborative Filtering
- URL: http://arxiv.org/abs/2308.07048v1
- Date: Mon, 14 Aug 2023 10:18:24 GMT
- Title: UIPC-MF: User-Item Prototype Connection Matrix Factorization for
Explainable Collaborative Filtering
- Authors: Lei Pan and Von-Wun Soo
- Abstract summary: We propose UIPC-MF, a prototype-based matrix factorization method for explainable collaborative filtering recommendations.
To enhance explainability, UIPC-MF learns connection weights that reflect the associative relations between user and item prototypes for recommendations.
UIPC-MF outperforms other prototype-based baseline methods in terms of Hit Ratio and Normalized Discounted Cumulative Gain on three datasets.
- Score: 2.921387082153523
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recommending items to potentially interested users has been an important
commercial task that faces two main challenges: accuracy and explainability.
While most collaborative filtering models rely on statistical computations on a
large scale of interaction data between users and items and can achieve high
performance, they often lack clear explanatory power. We propose UIPC-MF, a
prototype-based matrix factorization method for explainable collaborative
filtering recommendations. In UIPC-MF, both users and items are associated with
sets of prototypes, capturing general collaborative attributes. To enhance
explainability, UIPC-MF learns connection weights that reflect the associative
relations between user and item prototypes for recommendations. UIPC-MF
outperforms other prototype-based baseline methods in terms of Hit Ratio and
Normalized Discounted Cumulative Gain on three datasets, while also providing
better transparency.
Related papers
- GaVaMoE: Gaussian-Variational Gated Mixture of Experts for Explainable Recommendation [55.769720670731516]
GaVaMoE is a novel framework for explainable recommendation.
It generates tailored explanations for specific user types and preferences.
It exhibits robust performance in scenarios with sparse user-item interactions.
arXiv Detail & Related papers (2024-10-15T17:59:30Z) - EDGE-Rec: Efficient and Data-Guided Edge Diffusion For Recommender Systems Graphs [0.0]
We propose a new attention mechanism to take advantage of real-valued interaction weights as well as user and item features directly.
We train a novel Graph Diffusion Transformer GDiT architecture to iteratively denoise the weighted interaction matrix of the user-item interaction graph directly.
Inspired by the recent progress in text-conditioned image generation, our method directly produces user-item rating predictions on the same scale as the original ratings.
arXiv Detail & Related papers (2024-09-23T03:23:20Z) - Improved Diversity-Promoting Collaborative Metric Learning for Recommendation [127.08043409083687]
Collaborative Metric Learning (CML) has recently emerged as a popular method in recommendation systems.
This paper focuses on a challenging scenario where a user has multiple categories of interests.
We propose a novel method called textitDiversity-Promoting Collaborative Metric Learning (DPCML)
arXiv Detail & Related papers (2024-09-02T07:44:48Z) - Towards Explainable Collaborative Filtering with Taste Clusters Learning [43.4512681951459]
Collaborative Filtering (CF) is a widely used and effective technique for recommender systems.
Adding explainability to recommendation models can not only increase trust in the decisionmaking process, but also have multiple benefits.
We propose a neat and effective Explainable Collaborative Filtering (ECF) model that leverages interpretable cluster learning.
arXiv Detail & Related papers (2023-04-27T03:08:15Z) - Graph Collaborative Signals Denoising and Augmentation for
Recommendation [75.25320844036574]
We propose a new graph adjacency matrix that incorporates user-user and item-item correlations.
We show that the inclusion of user-user and item-item correlations can improve recommendations for users with both abundant and insufficient interactions.
arXiv Detail & Related papers (2023-04-06T19:43:37Z) - Broad Recommender System: An Efficient Nonlinear Collaborative Filtering
Approach [56.12815715932561]
We propose a new broad recommender system called Broad Collaborative Filtering (BroadCF)
Instead of Deep Neural Networks (DNNs), Broad Learning System (BLS) is used as a mapping function to learn the complex nonlinear relationships between users and items.
Extensive experiments conducted on seven benchmark datasets have confirmed the effectiveness of the proposed BroadCF algorithm.
arXiv Detail & Related papers (2022-04-20T01:25:08Z) - Hierarchical Latent Relation Modeling for Collaborative Metric Learning [8.59872983871365]
Collaborative Metric Learning (CML) recently emerged as a powerful paradigm for recommendation based on implicit feedback collaborative filtering.
We present a hierarchical CML model that jointly captures latent user-item and item-item relations from implicit data.
We empirically show the relevance of this joint relational modeling, by outperforming existing CML models on recommendation tasks on several real-world datasets.
arXiv Detail & Related papers (2021-07-26T17:45:11Z) - The Stereotyping Problem in Collaboratively Filtered Recommender Systems [77.56225819389773]
We show that matrix factorization-based collaborative filtering algorithms induce a kind of stereotyping.
If preferences for a textitset of items are anti-correlated in the general user population, then those items may not be recommended together to a user.
We propose an alternative modelling fix, which is designed to capture the diverse multiple interests of each user.
arXiv Detail & Related papers (2021-06-23T18:37:47Z) - Dual-embedding based Neural Collaborative Filtering for Recommender
Systems [0.7949579654743338]
We propose a general collaborative filtering framework named DNCF, short for Dual-embedding based Neural Collaborative Filtering.
In addition to learning the primitive embedding for a user (an item), we introduce an additional embedding from the perspective of the interacted items (users) to augment the user (item) representation.
arXiv Detail & Related papers (2021-02-04T11:32:11Z) - Towards Open-World Recommendation: An Inductive Model-based
Collaborative Filtering Approach [115.76667128325361]
Recommendation models can effectively estimate underlying user interests and predict one's future behaviors.
We propose an inductive collaborative filtering framework that contains two representation models.
Our model achieves promising results for recommendation on few-shot users with limited training ratings and new unseen users.
arXiv Detail & Related papers (2020-07-09T14:31:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.