EDGE-Rec: Efficient and Data-Guided Edge Diffusion For Recommender Systems Graphs
- URL: http://arxiv.org/abs/2409.14689v1
- Date: Mon, 23 Sep 2024 03:23:20 GMT
- Title: EDGE-Rec: Efficient and Data-Guided Edge Diffusion For Recommender Systems Graphs
- Authors: Utkarsh Priyam, Hemit Shah, Edoardo Botta,
- Abstract summary: We propose a new attention mechanism to take advantage of real-valued interaction weights as well as user and item features directly.
We train a novel Graph Diffusion Transformer GDiT architecture to iteratively denoise the weighted interaction matrix of the user-item interaction graph directly.
Inspired by the recent progress in text-conditioned image generation, our method directly produces user-item rating predictions on the same scale as the original ratings.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most recommender systems research focuses on binary historical user-item interaction encodings to predict future interactions. User features, item features, and interaction strengths remain largely under-utilized in this space or only indirectly utilized, despite proving largely effective in large-scale production recommendation systems. We propose a new attention mechanism, loosely based on the principles of collaborative filtering, called Row-Column Separable Attention RCSA to take advantage of real-valued interaction weights as well as user and item features directly. Building on this mechanism, we additionally propose a novel Graph Diffusion Transformer GDiT architecture which is trained to iteratively denoise the weighted interaction matrix of the user-item interaction graph directly. The weighted interaction matrix is built from the bipartite structure of the user-item interaction graph and corresponding edge weights derived from user-item rating interactions. Inspired by the recent progress in text-conditioned image generation, our method directly produces user-item rating predictions on the same scale as the original ratings by conditioning the denoising process on user and item features with a principled approach.
Related papers
- Retrieval Augmentation via User Interest Clustering [57.63883506013693]
Industrial recommender systems are sensitive to the patterns of user-item engagement.
We propose a novel approach that efficiently constructs user interest and facilitates low computational cost inference.
Our approach has been deployed in multiple products at Meta, facilitating short-form video related recommendation.
arXiv Detail & Related papers (2024-08-07T16:35:10Z) - Neural Graph Collaborative Filtering Using Variational Inference [19.80976833118502]
We introduce variational embedding collaborative filtering (GVECF) as a novel framework to incorporate representations learned through a variational graph auto-encoder.
Our proposed method achieves up to 13.78% improvement in the recall over the test data.
arXiv Detail & Related papers (2023-11-20T15:01:33Z) - Graph Collaborative Signals Denoising and Augmentation for
Recommendation [75.25320844036574]
We propose a new graph adjacency matrix that incorporates user-user and item-item correlations.
We show that the inclusion of user-user and item-item correlations can improve recommendations for users with both abundant and insufficient interactions.
arXiv Detail & Related papers (2023-04-06T19:43:37Z) - Item Graph Convolution Collaborative Filtering for Inductive
Recommendations [8.653065412619357]
We propose a convolution-based algorithm, which is inductive from the user perspective, while at the same time, depending on implicit user-item interaction data.
We show that our approach achieves state-the-art recommendation performance with respect to transductive baselines on four real-world datasets.
arXiv Detail & Related papers (2023-03-28T12:58:41Z) - Ordinal Graph Gamma Belief Network for Social Recommender Systems [54.9487910312535]
We develop a hierarchical Bayesian model termed ordinal graph factor analysis (OGFA), which jointly models user-item and user-user interactions.
OGFA not only achieves good recommendation performance, but also extracts interpretable latent factors corresponding to representative user preferences.
We extend OGFA to ordinal graph gamma belief network, which is a multi-stochastic-layer deep probabilistic model.
arXiv Detail & Related papers (2022-09-12T09:19:22Z) - IA-GCN: Interactive Graph Convolutional Network for Recommendation [13.207235494649343]
Graph Convolutional Network (GCN) has become a novel state-of-the-art for Collaborative Filtering (CF) based Recommender Systems (RS)
We build bilateral interactive guidance between each user-item pair and propose a new model named IA-GCN (short for InterActive GCN)
Our model is built on top of LightGCN, a state-of-the-art GCN model for CF, and can be combined with various GCN-based CF architectures in an end-to-end fashion.
arXiv Detail & Related papers (2022-04-08T03:38:09Z) - Graph Convolutional Embeddings for Recommender Systems [67.5973695167534]
We propose a graph convolutional embedding layer for N-partite graphs that processes user-item-context interactions.
More specifically, we define a graph convolutional embedding layer for N-partite graphs that processes user-item-context interactions.
arXiv Detail & Related papers (2021-03-05T10:46:16Z) - Dynamic Graph Collaborative Filtering [64.87765663208927]
Dynamic recommendation is essential for recommender systems to provide real-time predictions based on sequential data.
Here we propose Dynamic Graph Collaborative Filtering (DGCF), a novel framework leveraging dynamic graphs to capture collaborative and sequential relations.
Our approach achieves higher performance when the dataset contains less action repetition, indicating the effectiveness of integrating dynamic collaborative information.
arXiv Detail & Related papers (2021-01-08T04:16:24Z) - Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning [82.46332224556257]
We propose a novel adversarial learning approach by leveraging user interaction data for the Knowledge Graph Completion task.
Our generator is isolated from user interaction data, and serves to improve the performance of the discriminator.
To discover implicit entity preference of users, we design an elaborate collaborative learning algorithms based on graph neural networks.
arXiv Detail & Related papers (2020-03-28T05:47:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.