論文の概要: Checklist to Define the Identification of TP, FP, and FN Object Detections in Automated Driving
- arxiv url: http://arxiv.org/abs/2308.07106v2
- Date: Wed, 18 Sep 2024 14:27:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-19 23:57:01.051671
- Title: Checklist to Define the Identification of TP, FP, and FN Object Detections in Automated Driving
- Title(参考訳): 自動走行におけるTP, FP, FN物体検出の識別のためのチェックリスト
- Authors: Michael Hoss,
- Abstract要約: 本稿では、関連する機能面と実装の詳細のチェックリストを提供する。
チェックリストを完全に形式化することはできないが、実践者がテストの曖昧さを最小限に抑えるのに役立つ。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The object perception of automated driving systems must pass quality and robustness tests before a safe deployment. Such tests typically identify true positive (TP), false-positive (FP), and false-negative (FN) detections and aggregate them to metrics. Since the literature seems to be lacking a comprehensive way to define the identification of TPs/FPs/FNs, this paper provides a checklist of relevant functional aspects and implementation details. Besides labeling policies of the test set, we cover areas of vision, occlusion handling, safety-relevant areas, matching criteria, temporal and probabilistic issues, and further aspects. Even though the checklist cannot be fully formalized, it can help practitioners minimize the ambiguity of their tests, which, in turn, makes statements on object perception more reliable and comparable.
- Abstract(参考訳): 自動走行システムのオブジェクト認識は、安全な配置の前に品質と堅牢性テストに合格しなければならない。
このような検査は通常、真陽性(TP)、偽陽性(FP)、偽陰性(FN)の検出を識別し、それらをメトリクスに集約する。
文献はTP/FP/FNの識別を包括的に定義する手段が欠如しているようで,本論文は機能的側面と実装の詳細のチェックリストを提供する。
テストセットのラベル付けポリシに加えて、視覚、オクルージョンハンドリング、安全関連領域、マッチング基準、時間的および確率的問題、その他の側面をカバーしています。
チェックリストを完全に形式化することはできないが、実践者がテストの曖昧さを最小限に抑えるのに役立つ。
関連論文リスト
- Semantic or Covariate? A Study on the Intractable Case of Out-of-Distribution Detection [70.57120710151105]
ID分布のセマンティック空間をより正確に定義する。
また,OOD と ID の区別性を保証する "Tractable OOD" の設定も定義する。
論文 参考訳(メタデータ) (2024-11-18T03:09:39Z) - Uncertainty Estimation for 3D Object Detection via Evidential Learning [63.61283174146648]
本稿では,3次元検出器における鳥の視線表示における明らかな学習損失を利用して,3次元物体検出の不確かさを定量化するためのフレームワークを提案する。
本研究では,これらの不確実性評価の有効性と重要性を,分布外シーンの特定,局所化の不十分な物体の発見,および(偽陰性)検出の欠如について示す。
論文 参考訳(メタデータ) (2024-10-31T13:13:32Z) - Factcheck-Bench: Fine-Grained Evaluation Benchmark for Automatic Fact-checkers [121.53749383203792]
本稿では,大規模言語モデル (LLM) 生成応答の事実性に注釈を付けるための総合的なエンドツーエンドソリューションを提案する。
オープンドメインの文書レベルの事実性ベンチマークを,クレーム,文,文書の3段階の粒度で構築する。
予備実験によると、FacTool、FactScore、Perplexityは虚偽の主張を識別するのに苦労している。
論文 参考訳(メタデータ) (2023-11-15T14:41:57Z) - Towards Reliable AI: Adequacy Metrics for Ensuring the Quality of
System-level Testing of Autonomous Vehicles [5.634825161148484]
我々は、"Test suite Instance Space Adequacy"(TISA)メトリクスと呼ばれる一連のブラックボックステストの精度指標を紹介します。
TISAメトリクスは、テストスイートの多様性とカバレッジと、テスト中に検出されたバグの範囲の両方を評価する手段を提供する。
AVのシステムレベルのシミュレーションテストにおいて検出されたバグ数との相関を検証し,TISA測定の有効性を評価する。
論文 参考訳(メタデータ) (2023-11-14T10:16:05Z) - DARTH: Holistic Test-time Adaptation for Multiple Object Tracking [87.72019733473562]
複数物体追跡(MOT)は、自律運転における知覚システムの基本的構成要素である。
運転システムの安全性の追求にもかかわらず、テスト時間条件における領域シフトに対するMOT適応問題に対する解決策は提案されていない。
我々はMOTの総合的なテスト時間適応フレームワークであるDARTHを紹介する。
論文 参考訳(メタデータ) (2023-10-03T10:10:42Z) - Towards Building Self-Aware Object Detectors via Reliable Uncertainty
Quantification and Calibration [17.461451218469062]
本稿では,自己認識オブジェクト検出(SAOD)タスクを紹介する。
SAODタスクは、自律運転のような安全クリティカルな環境でオブジェクト検出器が直面する課題を尊重し、遵守する。
我々は、多数のオブジェクト検出器をテストするために、新しいメトリクスと大規模なテストデータセットを導入したフレームワークを広範囲に使用しています。
論文 参考訳(メタデータ) (2023-07-03T11:16:39Z) - Identifying and Explaining Safety-critical Scenarios for Autonomous
Vehicles via Key Features [5.634825161148484]
本稿では,AVの安全でない動作を明らかにする能力に影響を及ぼすテストシナリオの重要な特徴を特定するために,ISA(インスタンス空間解析)を用いる。
ISAは、安全クリティカルなシナリオと通常の運転とを最も区別する機能を特定し、2Dのテストシナリオ結果(セーフ/アンセーフ)への影響を可視化する。
特定された機能の予測能力をテストするために、5つの機械学習分類器をトレーニングし、テストシナリオを安全または安全でないものとして分類する。
論文 参考訳(メタデータ) (2022-12-15T00:52:47Z) - Unveiling The Mask of Position-Information Pattern Through the Mist of
Image Features [75.62755703738696]
近年の研究では、畳み込みニューラルネットワークにおけるパディングが絶対位置情報を符号化していることが示されている。
位置情報の強度を定量化する既存の指標は信頼性が低いままである。
符号化された位置情報を計測(および可視化)するための新しい指標を提案する。
論文 参考訳(メタデータ) (2022-06-02T17:59:57Z) - CertainNet: Sampling-free Uncertainty Estimation for Object Detection [65.28989536741658]
ニューラルネットワークの不確実性を推定することは、安全クリティカルな設定において基本的な役割を果たす。
本研究では,オブジェクト検出のための新しいサンプリング不要不確実性推定法を提案する。
私たちはそれをCertainNetと呼び、各出力信号に対して、オブジェクト性、クラス、位置、サイズという、別の不確実性を提供するのは、これが初めてです。
論文 参考訳(メタデータ) (2021-10-04T17:59:31Z) - A Review of Testing Object-Based Environment Perception for Safe
Automated Driving [0.0]
自動運転システムの安全確保は、環境認識の不確実性を考慮しなければならない。
本論文では,安全確保の一環として認識テストがいかに実現されるかに関する文献をレビューする。
論文 参考訳(メタデータ) (2021-02-16T21:40:39Z) - Combining Deep Learning and Verification for Precise Object Instance
Detection [13.810783248835186]
我々は,提案した検出を受理するためにパスしなければならない検証テストのセットを開発する。
これらのテストにより、ベース検出器の全体的な精度が向上し、受け入れられたサンプルが正しい可能性が極めて高いことを示す。
これにより、検出器は高精度なシステムで動作することができ、したがってロボット認識システムに使用できる。
論文 参考訳(メタデータ) (2019-12-27T18:11:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。