論文の概要: Identifying and Explaining Safety-critical Scenarios for Autonomous
Vehicles via Key Features
- arxiv url: http://arxiv.org/abs/2212.07566v2
- Date: Tue, 28 Nov 2023 22:50:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-01 01:15:12.013201
- Title: Identifying and Explaining Safety-critical Scenarios for Autonomous
Vehicles via Key Features
- Title(参考訳): 重要な特徴を生かした自動運転車の安全クリティカルシナリオの特定と説明
- Authors: Neelofar, Aldeida Aleti
- Abstract要約: 本稿では,AVの安全でない動作を明らかにする能力に影響を及ぼすテストシナリオの重要な特徴を特定するために,ISA(インスタンス空間解析)を用いる。
ISAは、安全クリティカルなシナリオと通常の運転とを最も区別する機能を特定し、2Dのテストシナリオ結果(セーフ/アンセーフ)への影響を可視化する。
特定された機能の予測能力をテストするために、5つの機械学習分類器をトレーニングし、テストシナリオを安全または安全でないものとして分類する。
- 参考スコア(独自算出の注目度): 5.634825161148484
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ensuring the safety of autonomous vehicles (AVs) is of utmost importance and
testing them in simulated environments is a safer option than conducting
in-field operational tests. However, generating an exhaustive test suite to
identify critical test scenarios is computationally expensive as the
representation of each test is complex and contains various dynamic and static
features, such as the AV under test, road participants (vehicles, pedestrians,
and static obstacles), environmental factors (weather and light), and the
road's structural features (lanes, turns, road speed, etc.). In this paper, we
present a systematic technique that uses Instance Space Analysis (ISA) to
identify the significant features of test scenarios that affect their ability
to reveal the unsafe behaviour of AVs. ISA identifies the features that best
differentiate safety-critical scenarios from normal driving and visualises the
impact of these features on test scenario outcomes (safe/unsafe) in 2D. This
visualization helps to identify untested regions of the instance space and
provides an indicator of the quality of the test suite in terms of the
percentage of feature space covered by testing. To test the predictive ability
of the identified features, we train five Machine Learning classifiers to
classify test scenarios as safe or unsafe. The high precision, recall, and F1
scores indicate that our proposed approach is effective in predicting the
outcome of a test scenario without executing it and can be used for test
generation, selection, and prioritization.
- Abstract(参考訳): 自動運転車(AV)の安全性の確保は最重要であり、模擬環境でのテストは現地での運用テストよりも安全な選択肢である。
しかしながら、重要なテストシナリオを特定するための徹底的なテストスイートの生成は、各テストの表現が複雑で、テスト中のAV、道路参加者(車両、歩行者、静的障害物)、環境要因(重量と光)、道路の構造的特徴(レーン、ターン、道路速度など)など、様々な動的および静的な特徴を含むため、計算的にコストがかかる。
本稿では,インスタンス空間解析(isa)を用いて,avsの安全でない動作を明らかにする能力に影響を与えるテストシナリオの重要な特徴を識別する体系的手法を提案する。
ISAは、安全クリティカルなシナリオと通常の運転とを最も区別する機能を特定し、2Dのテストシナリオ結果(セーフ/アンセーフ)への影響を可視化する。
この視覚化は、インスタンス空間の未テスト領域を特定し、テストによってカバーされる機能空間の割合でテストスイートの品質の指標を提供するのに役立つ。
識別された機能の予測能力をテストするために、5つの機械学習分類器をトレーニングし、テストシナリオを安全か安全かのどちらかに分類します。
高い精度、リコール、f1スコアは、提案手法がテストシナリオの実行なしに結果を予測するのに有効であり、テスト生成、選択、優先順位付けに使用できることを示している。
関連論文リスト
- Rigorous Simulation-based Testing for Autonomous Driving Systems -- Targeting the Achilles' Heel of Four Open Autopilots [6.229766691427486]
本稿では,シナリオを単純なものに分割した厳密なテスト手法を提案する。
クリティカルな状況において、車両をテスト対象とするクリティカルな構成のテストケースを生成します。
テストケースでは、Apollo、Autoware、CarlaとLGSVLのオートパイロットに重大な欠陥が見られる。
論文 参考訳(メタデータ) (2024-05-27T08:06:21Z) - Diversity-guided Search Exploration for Self-driving Cars Test
Generation through Frenet Space Encoding [4.135985106933988]
自動運転車(SDC)の台頭は、動的環境に対処する上で重要な安全上の課題を提示している。
フィールドテストは不可欠であるが、現在の手法では重要なSDCシナリオを評価するための多様性が欠如している。
本研究では, ディープラーニングバニラ変圧器モデルを用いて, アウトオブバウンド状態に導く可能性を示す。
論文 参考訳(メタデータ) (2024-01-26T06:57:00Z) - ASSERT: Automated Safety Scenario Red Teaming for Evaluating the
Robustness of Large Language Models [65.79770974145983]
ASSERT、Automated Safety Scenario Red Teamingは、セマンティックなアグリゲーション、ターゲットブートストラップ、敵の知識注入という3つの方法で構成されている。
このプロンプトを4つの安全領域に分割し、ドメインがモデルの性能にどのように影響するかを詳細に分析する。
統計的に有意な性能差は, 意味的関連シナリオにおける絶対分類精度が最大11%, ゼロショット逆数設定では最大19%の絶対誤差率であることがわかった。
論文 参考訳(メタデータ) (2023-10-14T17:10:28Z) - DARTH: Holistic Test-time Adaptation for Multiple Object Tracking [87.72019733473562]
複数物体追跡(MOT)は、自律運転における知覚システムの基本的構成要素である。
運転システムの安全性の追求にもかかわらず、テスト時間条件における領域シフトに対するMOT適応問題に対する解決策は提案されていない。
我々はMOTの総合的なテスト時間適応フレームワークであるDARTHを紹介する。
論文 参考訳(メタデータ) (2023-10-03T10:10:42Z) - A Requirements-Driven Platform for Validating Field Operations of Small
Uncrewed Aerial Vehicles [48.67061953896227]
DroneReqValidator (DRV)は、sUAS開発者が運用コンテキストを定義し、複数のsUASミッション要件を設定し、安全性特性を指定し、独自のsUASアプリケーションを高忠実な3D環境にデプロイすることを可能にする。
DRVモニタリングシステムは、sUASと環境からランタイムデータを収集し、安全特性のコンプライアンスを分析し、違反をキャプチャする。
論文 参考訳(メタデータ) (2023-07-01T02:03:49Z) - CertainNet: Sampling-free Uncertainty Estimation for Object Detection [65.28989536741658]
ニューラルネットワークの不確実性を推定することは、安全クリティカルな設定において基本的な役割を果たす。
本研究では,オブジェクト検出のための新しいサンプリング不要不確実性推定法を提案する。
私たちはそれをCertainNetと呼び、各出力信号に対して、オブジェクト性、クラス、位置、サイズという、別の不確実性を提供するのは、これが初めてです。
論文 参考訳(メタデータ) (2021-10-04T17:59:31Z) - ViSTA: a Framework for Virtual Scenario-based Testing of Autonomous
Vehicles [2.20200533591633]
仮想シナリオに基づく自律走行車テスト(AV)のためのフレームワークViSTAについて紹介する。
本稿では,有意なパラメータを持つ特殊目的シナリオの設計を容易にする包括的テストケース生成手法について述べる。
テストケースの実行を自動化し、これらのテストケース下でのAVの性能を分析する方法について述べる。
論文 参考訳(メタデータ) (2021-09-06T15:12:17Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
最先端運転シミュレータを用いて,テストシナリオを特徴付け,生成するための効率的なメカニズムを提案する。
次世代シミュレーション(NGSIM)プロジェクトにおける実運転データの特徴付けに本手法を用いる。
事故回避の複雑さに基づいてメトリクスを定義してシナリオをランク付けし、事故発生の可能性を最小限に抑えるための洞察を提供します。
論文 参考訳(メタデータ) (2021-03-12T17:00:23Z) - Search-based Test-Case Generation by Monitoring Responsibility Safety
Rules [2.1270496914042996]
本研究では,シミュレーションに基づく運転テストデータのスクリーニングと分類を行う手法を提案する。
本フレームワークは,S-TALIROおよびSim-ATAVツールとともに配布されている。
論文 参考訳(メタデータ) (2020-04-25T10:10:11Z) - Learning Control Barrier Functions from Expert Demonstrations [69.23675822701357]
制御障壁関数(CBF)に基づく安全な制御器合成のための学習に基づくアプローチを提案する。
最適化に基づくCBFの学習手法を解析し、基礎となる力学系のリプシッツ仮定の下で証明可能な安全保証を享受する。
私たちの知る限りでは、これらはデータから確実に安全な制御障壁関数を学習する最初の結果です。
論文 参考訳(メタデータ) (2020-04-07T12:29:06Z) - Efficient statistical validation with edge cases to evaluate Highly
Automated Vehicles [6.198523595657983]
自動運転車の大規模展開は、まだ解決されていない多くの安全上の課題にもかかわらず、差し迫っているようだ。
既存の標準は、検証が要求をカバーするテストケースのセットだけを必要とする決定論的プロセスに焦点を当てています。
本稿では, 自動生成テストケースを最悪のシナリオに偏り付け, システムの挙動の統計的特性を計算するための新しい手法を提案する。
論文 参考訳(メタデータ) (2020-03-04T04:35:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。