論文の概要: Large Language Models for Information Retrieval: A Survey
- arxiv url: http://arxiv.org/abs/2308.07107v2
- Date: Tue, 15 Aug 2023 12:09:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-16 15:41:30.892153
- Title: Large Language Models for Information Retrieval: A Survey
- Title(参考訳): 情報検索のための大規模言語モデル:調査
- Authors: Yutao Zhu, Huaying Yuan, Shuting Wang, Jiongnan Liu, Wenhan Liu,
Chenlong Deng, Zhicheng Dou, and Ji-Rong Wen
- Abstract要約: 情報検索は、項ベースの手法から高度なニューラルモデルとの統合へと進化してきた。
ニューラルネットワークは複雑なコンテキスト信号や意味的ニュアンスを捉えるのに優れていますが、データ不足、解釈可能性、文脈的に妥当で不正確な応答の生成といった課題に直面しています。
近年の研究では、大規模言語モデル(LLM)を活用してIRシステムの改善が試みられている。
- 参考スコア(独自算出の注目度): 56.402510169918884
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a primary means of information acquisition, information retrieval (IR)
systems, such as search engines, have integrated themselves into our daily
lives. These systems also serve as components of dialogue, question-answering,
and recommender systems. The trajectory of IR has evolved dynamically from its
origins in term-based methods to its integration with advanced neural models.
While the neural models excel at capturing complex contextual signals and
semantic nuances, thereby reshaping the IR landscape, they still face
challenges such as data scarcity, interpretability, and the generation of
contextually plausible yet potentially inaccurate responses. This evolution
requires a combination of both traditional methods (such as term-based sparse
retrieval methods with rapid response) and modern neural architectures (such as
language models with powerful language understanding capacity). Meanwhile, the
emergence of large language models (LLMs), typified by ChatGPT and GPT-4, has
revolutionized natural language processing due to their remarkable language
understanding, generation, generalization, and reasoning abilities.
Consequently, recent research has sought to leverage LLMs to improve IR
systems. Given the rapid evolution of this research trajectory, it is necessary
to consolidate existing methodologies and provide nuanced insights through a
comprehensive overview. In this survey, we delve into the confluence of LLMs
and IR systems, including crucial aspects such as query rewriters, retrievers,
rerankers, and readers. Additionally, we explore promising directions within
this expanding field.
- Abstract(参考訳): 情報取得の主要な手段として,検索エンジンなどの情報検索(IR)システムが,私たちの日常生活に組み込まれている。
これらのシステムは対話、質問応答、推薦システムの構成要素としても機能する。
IRの軌道は、項ベースの手法の起源から高度なニューラルモデルとの統合まで、動的に進化してきた。
ニューラルネットワークは複雑なコンテキスト信号やセマンティックなニュアンスを捉えるのに優れており、IRのランドスケープを再構築するが、データ不足、解釈可能性、文脈的に妥当で不正確な応答の生成といった課題に直面している。
この進化には従来の手法(項ベースのスパース検索法と迅速な応答法など)と現代のニューラルアーキテクチャ(強力な言語理解能力を持つ言語モデルなど)の組み合わせが必要である。
一方、ChatGPTとGPT-4に代表される大規模言語モデル(LLM)の出現は、言語理解、生成、一般化、推論能力によって自然言語処理に革命をもたらした。
その結果、最近の研究はLLMをIRシステムの改善に活用しようと試みている。
この研究軌道の急速な進化を考えると、既存の方法論を整理し、包括的概要を通して微妙な洞察を提供する必要がある。
本調査では,クエリリフレクタ,レトリバー,リランカ,リーダといった重要な側面を含む,LLMとIRシステムの合流点を探索する。
さらに,この拡大分野における有望な方向性を探究する。
関連論文リスト
- From Linguistic Giants to Sensory Maestros: A Survey on Cross-Modal Reasoning with Large Language Models [56.9134620424985]
クロスモーダル推論(CMR)は、より高度な人工知能システムへの進化における重要な能力として、ますます認識されている。
CMRタスクに取り組むためにLLM(Large Language Models)をデプロイする最近のトレンドは、その有効性を高めるためのアプローチの新たな主流となっている。
本調査では,LLMを用いてCMRで適用された現在の方法論を,詳細な3階層分類に分類する。
論文 参考訳(メタデータ) (2024-09-19T02:51:54Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
検索エンハンスメントは機械学習(ML)の幅広い範囲に拡張できる
この研究は、MLの様々な領域の文献を、現在の文献から欠落している一貫した表記で合成することで、このパラダイムの正式なフレームワークであるRetrieval-Enhanced Machine Learning (REML)を導入する。
本研究の目的は、様々な分野の研究者に対して、検索強化モデルの包括的、正式に構造化された枠組みを付与し、学際的な将来の研究を促進することである。
論文 参考訳(メタデータ) (2024-07-17T20:01:21Z) - RAG and RAU: A Survey on Retrieval-Augmented Language Model in Natural Language Processing [0.2302001830524133]
本稿では,検索言語モデル (RALM) に関する総合的な概要の欠如について論じる。
本稿では、Retrievers、Language Models、Augmentationsなど、ALMの本質的なコンポーネントについて論じる。
RALMは、翻訳や対話システムから知識集約アプリケーションまで、様々なタスクにおいて有用性を示す。
論文 参考訳(メタデータ) (2024-04-30T13:14:51Z) - Navigating the Knowledge Sea: Planet-scale answer retrieval using LLMs [0.0]
情報検索は、技術と技術の継続的な改良によって特徴づけられる。
本稿では,従来の探索手法と解答の新たなパラダイムとのギャップを埋める上で,Large Language Models (LLMs) の役割に焦点を当てる。
論文 参考訳(メタデータ) (2024-02-07T23:39:40Z) - Recent Advances in Hate Speech Moderation: Multimodality and the Role of Large Models [52.24001776263608]
この包括的調査は、HSモデレーションの最近の歩みを掘り下げている。
大型言語モデル(LLM)と大規模マルチモーダルモデル(LMM)の急成長する役割を強調した。
研究における既存のギャップを、特に表現不足言語や文化の文脈で特定する。
論文 参考訳(メタデータ) (2024-01-30T03:51:44Z) - Search Still Matters: Information Retrieval in the Era of Generative AI [1.68609633200389]
この視点は、IRプロセスのモチベーション、考慮、結果の文脈における生成的AIの使用を探求する。
このようなシステムのユーザ、特に学者は、信頼性、タイムライン、検索の文脈化に関する懸念を持っている。
論文 参考訳(メタデータ) (2023-11-30T13:36:21Z) - Enhancing Retrieval-Augmented Large Language Models with Iterative
Retrieval-Generation Synergy [164.83371924650294]
検索と生成を反復的に同期させるIter-RetGenと呼ばれる手法により,高い性能が得られることを示す。
モデル出力は、タスクを完了するために必要なものを示し、より関連する知識を取得するための情報的コンテキストを提供する。
Iter-RetGenプロセスは、すべての知識を全体として取得し、構造的な制約なしに生成時の柔軟性をほとんど保持します。
論文 参考訳(メタデータ) (2023-05-24T16:17:36Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteRにより、RMはLLM生成した知識コレクションを使用してクエリの知識を拡張することができる。
InteRは、最先端手法と比較して総合的に優れたゼロショット検索性能を実現する。
論文 参考訳(メタデータ) (2023-05-12T11:58:15Z) - Survey on Deep Fuzzy Systems in regression applications: a view on
interpretability [1.2158275183241178]
回帰問題は、ディープラーニング(DL)技術によってますます受け入れられてきた。
これらのモデルの解釈可能性にアクセスすることは、センシティブな領域の問題に対処する上で重要な要素である。
本稿では,DLとFLSを組み合わせた既存手法の現状について検討する。
論文 参考訳(メタデータ) (2022-09-09T10:40:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。