論文の概要: Position: Key Claims in LLM Research Have a Long Tail of Footnotes
- arxiv url: http://arxiv.org/abs/2308.07120v2
- Date: Sat, 1 Jun 2024 15:20:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-04 21:10:26.428912
- Title: Position: Key Claims in LLM Research Have a Long Tail of Footnotes
- Title(参考訳): LLM研究の要点:脚注は長い
- Authors: Anna Rogers, Alexandra Sasha Luccioni,
- Abstract要約: 我々は、Large Language Models(LLMs)の動作定義を持っていないと論じる。
それらの特性に関する5つの共通主張を批判的に検討する。
今後の研究の方向性とフレーミングについて提案する。
- 参考スコア(独自算出の注目度): 81.14898541318198
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Much of the recent discourse within the ML community has been centered around Large Language Models (LLMs), their functionality and potential -- yet not only do we not have a working definition of LLMs, but much of this discourse relies on claims and assumptions that are worth re-examining. We contribute a definition of LLMs, critically examine five common claims regarding their properties (including 'emergent properties'), and conclude with suggestions for future research directions and their framing.
- Abstract(参考訳): MLコミュニティにおける最近の談話の多くは、Large Language Models (LLMs)、その機能と潜在能力を中心にしている。
LLMの定義に寄与し、それらの特性に関する5つの共通主張(創発的特性を含む)を批判的に検証し、今後の研究方向とフレーミングについて提案する。
関連論文リスト
- TruthEval: A Dataset to Evaluate LLM Truthfulness and Reliability [0.0]
我々は、TruthEvalと呼ばれるベンチマークのためのセンシティブなトピックに関する難解なステートメントのキュレートしたコレクションを提示する。
これらのステートメントは手作業でキュレートされ、既知の真理値を含んでいる。
このデータセットを用いていくつかの初期分析を行い、単純な質問を理解できないという単純なタスクでLLMが失敗する事例をいくつか見出した。
論文 参考訳(メタデータ) (2024-06-04T00:01:35Z) - Potential and Limitations of LLMs in Capturing Structured Semantics: A Case Study on SRL [78.80673954827773]
大きな言語モデル(LLM)は、言語理解を高め、解釈可能性を改善し、バイアスを減らすために構造化セマンティクスをキャプチャする上で重要な役割を果たす。
セマンティック・ロール・ラベルリング(SRL)を,構造化意味論を抽出するLLMの能力を探るための基本課題として用いることを提案する。
LLMは実際にセマンティック構造をキャプチャすることができ、スケールアップは常にポテンシャルを反映するわけではない。
エラーのかなりの重複は、LLMと訓練されていない人間の両方によって行われ、全てのエラーの約30%を占めることに私たちは驚いています。
論文 参考訳(メタデータ) (2024-05-10T11:44:05Z) - Large Language Models: A Survey [69.72787936480394]
大規模言語モデル(LLM)は、広範囲の自然言語タスクにおける強力なパフォーマンスのために、多くの注目を集めている。
LLMの汎用言語理解と生成能力は、膨大なテキストデータに基づいて数十億のモデルのパラメータを訓練することで得られる。
論文 参考訳(メタデータ) (2024-02-09T05:37:09Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
大規模言語モデル(LLM)は、幅広いタスクにまたがる顕著な機能を示している。
自然言語で説明できる能力により、LLMは人間に与えられるパターンのスケールと複雑さを拡大することができる。
これらの新しい機能は、幻覚的な説明や膨大な計算コストなど、新しい課題を提起する。
論文 参考訳(メタデータ) (2024-01-30T17:38:54Z) - Benchmarking LLMs via Uncertainty Quantification [91.72588235407379]
オープンソースのLarge Language Models(LLM)の普及は、包括的な評価方法の緊急の必要性を強調している。
我々は不確実性定量化を統合した LLM のための新しいベンチマーク手法を提案する。
以上の結果より, 精度の高いLSMでは, 精度が低下する可能性があり, II) より大規模なLSMでは, より小型のLSMに比べて不確実性が高いこと, III) 命令ファインタニングではLCMの不確実性が高くなる傾向が示唆された。
論文 参考訳(メタデータ) (2024-01-23T14:29:17Z) - Large Language Models: The Need for Nuance in Current Debates and a
Pragmatic Perspective on Understanding [1.3654846342364308]
LLM(Large Language Models)は、文法的に正しい、流動的なテキストを生成する能力において、非並列である。
本論文は,LLM能力の批判において再発する3点を批判的に評価する。
LLMにおける現実の理解と意図の問題に関する実践的な視点を概説する。
論文 参考訳(メタデータ) (2023-10-30T15:51:04Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
本調査は,大規模言語モデル(LLM)における事実性の重要課題に対処する。
LLMが様々な領域にまたがる応用を見出すにつれ、その出力の信頼性と正確性は重要となる。
論文 参考訳(メタデータ) (2023-10-11T14:18:03Z) - Limits for Learning with Language Models [4.20859414811553]
大規模言語モデル(LLM)がボレル階層の第一段階を超えて概念を学習できないことを示す。
LLMは、細部と深い言語的理解を必要とするタスクについて、正式な保証なしに運用を続ける。
論文 参考訳(メタデータ) (2023-06-21T12:11:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。