SEMI-CenterNet: A Machine Learning Facilitated Approach for
Semiconductor Defect Inspection
- URL: http://arxiv.org/abs/2308.07180v2
- Date: Tue, 15 Aug 2023 16:58:42 GMT
- Title: SEMI-CenterNet: A Machine Learning Facilitated Approach for
Semiconductor Defect Inspection
- Authors: Vic De Ridder, Bappaditya Dey, Enrique Dehaerne, Sandip Halder, Stefan
De Gendt, Bartel Van Waeyenberge
- Abstract summary: We have proposed SEMI-CenterNet (SEMI-CN), a customized CN architecture trained on SEM images of semiconductor wafer defects.
SEMI-CN gets trained to output the center, class, size, and offset of a defect instance.
We train SEMI-CN on two datasets and benchmark two ResNet backbones for the framework.
- Score: 0.10555513406636088
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Continual shrinking of pattern dimensions in the semiconductor domain is
making it increasingly difficult to inspect defects due to factors such as the
presence of stochastic noise and the dynamic behavior of defect patterns and
types. Conventional rule-based methods and non-parametric supervised machine
learning algorithms like KNN mostly fail at the requirements of semiconductor
defect inspection at these advanced nodes. Deep Learning (DL)-based methods
have gained popularity in the semiconductor defect inspection domain because
they have been proven robust towards these challenging scenarios. In this
research work, we have presented an automated DL-based approach for efficient
localization and classification of defects in SEM images. We have proposed
SEMI-CenterNet (SEMI-CN), a customized CN architecture trained on SEM images of
semiconductor wafer defects. The use of the proposed CN approach allows
improved computational efficiency compared to previously studied DL models.
SEMI-CN gets trained to output the center, class, size, and offset of a defect
instance. This is different from the approach of most object detection models
that use anchors for bounding box prediction. Previous methods predict
redundant bounding boxes, most of which are discarded in postprocessing. CN
mitigates this by only predicting boxes for likely defect center points. We
train SEMI-CN on two datasets and benchmark two ResNet backbones for the
framework. Initially, ResNet models pretrained on the COCO dataset undergo
training using two datasets separately. Primarily, SEMI-CN shows significant
improvement in inference time against previous research works. Finally,
transfer learning (using weights of custom SEM dataset) is applied from ADI
dataset to AEI dataset and vice-versa, which reduces the required training time
for both backbones to reach the best mAP against conventional training method.
Related papers
- SINDER: Repairing the Singular Defects of DINOv2 [61.98878352956125]
Vision Transformer models trained on large-scale datasets often exhibit artifacts in the patch token they extract.
We propose a novel fine-tuning smooth regularization that rectifies structural deficiencies using only a small dataset.
arXiv Detail & Related papers (2024-07-23T20:34:23Z) - An Evaluation of Continual Learning for Advanced Node Semiconductor Defect Inspection [0.11184789007828977]
This work introduces a task-agnostic, meta-learning approach to semiconductor defect inspection.
It enables the incremental addition of new defect classes and scales to create a more robust and generalized model.
We have benchmarked our approach using real resist-wafer SEM (Scanning Electron Microscopy) datasets for two process steps, ADI and AEI.
arXiv Detail & Related papers (2024-07-17T16:41:22Z) - Self-Supervised Dual Contouring [30.9409064656302]
We propose a self-supervised training scheme for the Neural Dual Contouring meshing framework.
We use two novel self-supervised loss functions that encourage consistency between distances to the generated mesh.
We demonstrate that our self-supervised losses improve meshing performance in the single-view reconstruction task.
arXiv Detail & Related papers (2024-05-28T12:44:28Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - Conditional Mutual Information Constrained Deep Learning for
Classification [3.5237980787861964]
conditional mutual information (CMI) and normalized conditional mutual information (NCMI) are introduced to measure the concentration and performance of a classification deep neural network (DNN)
By using NCMI to evaluate popular DNNs pretrained over ImageNet in the literature, it is shown that their validation accuracies over ImageNet validation data set are more or less inversely proportional to their NCMI values.
A novel alternating learning algorithm is proposed to solve such a constrained optimization problem.
arXiv Detail & Related papers (2023-09-17T01:16:45Z) - SEMI-DiffusionInst: A Diffusion Model Based Approach for Semiconductor
Defect Classification and Segmentation [0.11999555634662631]
This work is the first demonstration to accurately detect and precisely segment semiconductor defect patterns by using a diffusion model.
Our proposed approach outperforms previous work on overall mAP and performs comparatively better or as per for almost all defect classes.
arXiv Detail & Related papers (2023-07-17T17:53:36Z) - Defect Classification in Additive Manufacturing Using CNN-Based Vision
Processing [76.72662577101988]
This paper examines two scenarios: first, using convolutional neural networks (CNNs) to accurately classify defects in an image dataset from AM and second, applying active learning techniques to the developed classification model.
This allows the construction of a human-in-the-loop mechanism to reduce the size of the data required to train and generate training data.
arXiv Detail & Related papers (2023-07-14T14:36:58Z) - Bridging Precision and Confidence: A Train-Time Loss for Calibrating
Object Detection [58.789823426981044]
We propose a novel auxiliary loss formulation that aims to align the class confidence of bounding boxes with the accurateness of predictions.
Our results reveal that our train-time loss surpasses strong calibration baselines in reducing calibration error for both in and out-domain scenarios.
arXiv Detail & Related papers (2023-03-25T08:56:21Z) - WaferSegClassNet -- A Light-weight Network for Classification and
Segmentation of Semiconductor Wafer Defects [3.1806743741013648]
We present WaferSegClassNet (WSCN), a novel network based on encoder-decoder architecture.
WSCN performs simultaneous classification and segmentation of both single and mixed-type wafer defects.
We are the first to show segmentation results on the MixedWM38 dataset.
arXiv Detail & Related papers (2022-07-03T05:46:19Z) - Fine-grained Data Distribution Alignment for Post-Training Quantization [100.82928284439271]
We propose a fine-grained data distribution alignment (FDDA) method to boost the performance of post-training quantization.
Our method shows the state-of-the-art performance on ImageNet, especially when the first and last layers are quantized to low-bit.
arXiv Detail & Related papers (2021-09-09T11:45:52Z) - Revisiting Initialization of Neural Networks [72.24615341588846]
We propose a rigorous estimation of the global curvature of weights across layers by approximating and controlling the norm of their Hessian matrix.
Our experiments on Word2Vec and the MNIST/CIFAR image classification tasks confirm that tracking the Hessian norm is a useful diagnostic tool.
arXiv Detail & Related papers (2020-04-20T18:12:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.