Defect Classification in Additive Manufacturing Using CNN-Based Vision
Processing
- URL: http://arxiv.org/abs/2307.07378v1
- Date: Fri, 14 Jul 2023 14:36:58 GMT
- Title: Defect Classification in Additive Manufacturing Using CNN-Based Vision
Processing
- Authors: Xiao Liu and Alessandra Mileo and Alan F. Smeaton
- Abstract summary: This paper examines two scenarios: first, using convolutional neural networks (CNNs) to accurately classify defects in an image dataset from AM and second, applying active learning techniques to the developed classification model.
This allows the construction of a human-in-the-loop mechanism to reduce the size of the data required to train and generate training data.
- Score: 76.72662577101988
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The development of computer vision and in-situ monitoring using visual
sensors allows the collection of large datasets from the additive manufacturing
(AM) process. Such datasets could be used with machine learning techniques to
improve the quality of AM. This paper examines two scenarios: first, using
convolutional neural networks (CNNs) to accurately classify defects in an image
dataset from AM and second, applying active learning techniques to the
developed classification model. This allows the construction of a
human-in-the-loop mechanism to reduce the size of the data required to train
and generate training data.
Related papers
- MaskTerial: A Foundation Model for Automated 2D Material Flake Detection [48.73213960205105]
We present a deep learning model, called MaskTerial, that uses an instance segmentation network to reliably identify 2D material flakes.
The model is extensively pre-trained using a synthetic data generator, that generates realistic microscopy images from unlabeled data.
We demonstrate significant improvements over existing techniques in the detection of low-contrast materials such as hexagonal boron nitride.
arXiv Detail & Related papers (2024-12-12T15:01:39Z) - Leveraging Semi-Supervised Learning to Enhance Data Mining for Image Classification under Limited Labeled Data [35.431340001608476]
Traditional data mining methods are inadequate when faced with large-scale, high-dimensional and complex data.
This study introduces semi-supervised learning methods, aiming to improve the algorithm's ability to utilize unlabeled data.
Specifically, we adopt a self-training method and combine it with a convolutional neural network (CNN) for image feature extraction and classification.
arXiv Detail & Related papers (2024-11-27T18:59:50Z) - An adaptive human-in-the-loop approach to emission detection of Additive
Manufacturing processes and active learning with computer vision [76.72662577101988]
In-situ monitoring and process control in Additive Manufacturing (AM) allows the collection of large amounts of emission data.
This data can be used as input into 3D and 2D representations of the 3D-printed parts.
The aim of this paper is to propose an adaptive human-in-the-loop approach using Machine Learning techniques.
arXiv Detail & Related papers (2022-12-12T15:11:18Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
Lithography modeling is a crucial problem in chip design to ensure a chip design mask is manufacturable.
Recent developments in machine learning have provided alternative solutions in replacing the time-consuming lithography simulations with deep neural networks.
We propose a litho-aware data augmentation framework to resolve the dilemma of limited data and improve the machine learning model performance.
arXiv Detail & Related papers (2022-10-27T20:53:39Z) - Weakly Supervised Change Detection Using Guided Anisotropic Difusion [97.43170678509478]
We propose original ideas that help us to leverage such datasets in the context of change detection.
First, we propose the guided anisotropic diffusion (GAD) algorithm, which improves semantic segmentation results.
We then show its potential in two weakly-supervised learning strategies tailored for change detection.
arXiv Detail & Related papers (2021-12-31T10:03:47Z) - DeepSatData: Building large scale datasets of satellite images for
training machine learning models [77.17638664503215]
This report presents design considerations for automatically generating satellite imagery datasets for training machine learning models.
We discuss issues faced from the point of view of deep neural network training and evaluation.
arXiv Detail & Related papers (2021-04-28T15:13:12Z) - Unsupervised Multi-Modal Representation Learning for Affective Computing
with Multi-Corpus Wearable Data [16.457778420360537]
We propose an unsupervised framework to reduce the reliance on human supervision.
The proposed framework utilizes two stacked convolutional autoencoders to learn latent representations from wearable electrocardiogram (ECG) and electrodermal activity (EDA) signals.
Our method outperforms current state-of-the-art results that have performed arousal detection on the same datasets.
arXiv Detail & Related papers (2020-08-24T22:01:55Z) - Unsupervised machine learning via transfer learning and k-means
clustering to classify materials image data [0.0]
This paper demonstrates how to construct, use, and evaluate a high performance unsupervised machine learning system for classifying images.
We use the VGG16 convolutional neural network pre-trained on the ImageNet dataset of natural images to extract feature representations for each micrograph.
The approach achieves $99.4% pm 0.16%$ accuracy, and the resulting model can be used to classify new images without retraining.
arXiv Detail & Related papers (2020-07-16T14:36:04Z) - 1D CNN Based Network Intrusion Detection with Normalization on
Imbalanced Data [0.19336815376402716]
Intrusion detection system (IDS) plays an essential role in computer networks protecting computing resources and data from outside attacks.
Recent IDS faces challenges improving flexibility and efficiency of the IDS for unexpected and unpredictable attacks.
We propose a deep learning approach for developing the efficient and flexible IDS using one-dimensional Convolutional Neural Network (1D-CNN)
arXiv Detail & Related papers (2020-03-01T12:23:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.