論文の概要: FOLT: Fast Multiple Object Tracking from UAV-captured Videos Based on
Optical Flow
- arxiv url: http://arxiv.org/abs/2308.07207v1
- Date: Mon, 14 Aug 2023 15:24:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-15 12:47:53.429520
- Title: FOLT: Fast Multiple Object Tracking from UAV-captured Videos Based on
Optical Flow
- Title(参考訳): FOLT:光学的流れに基づくUAVキャプチャ映像からの高速複数物体追跡
- Authors: Mufeng Yao, Jiaqi Wang, Jinlong Peng, Mingmin Chi, Chao Liu
- Abstract要約: 複数物体追跡(MOT)はコンピュータビジョンにおいてよく研究されている。
しかし、無人航空機(UAV)が撮影したビデオのMOTは、小さな物体の大きさ、ぼやけた物体の外観、そして非常に大きくて不規則な動きのために依然として困難である。
我々はこれらの問題を緩和し、UAVビューで高速かつ正確なMOTに到達するためにFOLTを提案する。
- 参考スコア(独自算出の注目度): 27.621524657473945
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multiple object tracking (MOT) has been successfully investigated in computer
vision.
However, MOT for the videos captured by unmanned aerial vehicles (UAV) is
still challenging due to small object size, blurred object appearance, and very
large and/or irregular motion in both ground objects and UAV platforms.
In this paper, we propose FOLT to mitigate these problems and reach fast and
accurate MOT in UAV view.
Aiming at speed-accuracy trade-off, FOLT adopts a modern detector and
light-weight optical flow extractor to extract object detection features and
motion features at a minimum cost.
Given the extracted flow, the flow-guided feature augmentation is designed to
augment the object detection feature based on its optical flow, which improves
the detection of small objects.
Then the flow-guided motion prediction is also proposed to predict the
object's position in the next frame, which improves the tracking performance of
objects with very large displacements between adjacent frames.
Finally, the tracker matches the detected objects and predicted objects using
a spatially matching scheme to generate tracks for every object.
Experiments on Visdrone and UAVDT datasets show that our proposed model can
successfully track small objects with large and irregular motion and outperform
existing state-of-the-art methods in UAV-MOT tasks.
- Abstract(参考訳): 複数物体追跡(MOT)はコンピュータビジョンにおいて成功した。
しかし、無人航空機(UAV)が撮影したビデオのMOTは、小さな物体の大きさ、ぼやけた物体の外観、地上の物体とUAVプラットフォームの両方で非常に大きく不規則な動きのために、依然として困難である。
本稿では,これらの問題を緩和し,UAVビューで高速かつ正確なMOTに到達するためのFOLTを提案する。
FOLTは速度精度のトレードオフを目標とし、近代的な検出器と軽量な光フロー抽出器を採用し、最小限のコストで物体検出特徴と運動特徴を抽出する。
抽出した流れを考慮に入れ, フロー誘導型特徴増強法は, 微小物体の検出を改善する光学的フローに基づいて物体検出機能を増強するように設計されている。
次に,次のフレームにおける物体の位置を予測するためにフロー誘導運動予測も提案し,隣接フレーム間の変位が大きい物体の追従性能を向上させる。
最後に、検出されたオブジェクトと予測されたオブジェクトとを空間的マッチングスキームでマッチングし、各オブジェクトのトラックを生成する。
Visdrone と UAVDT のデータセットを用いた実験により,提案手法は大規模で不規則な動きを持つ小さな物体の追跡に成功し,UAV-MOT タスクにおける既存の最先端手法よりも優れていた。
関連論文リスト
- SFTrack: A Robust Scale and Motion Adaptive Algorithm for Tracking Small and Fast Moving Objects [2.9803250365852443]
本稿では,無人航空機(UAV)映像における多物体追跡の問題に対処する。
交通監視システムや警察によるリアルタイム容疑者追跡など、様々なUAVアプリケーションにおいて重要な役割を果たしている。
低信頼度検出から対象物体の追跡を開始する新しい追跡戦略を提案する。
論文 参考訳(メタデータ) (2024-10-26T05:09:20Z) - STCMOT: Spatio-Temporal Cohesion Learning for UAV-Based Multiple Object Tracking [13.269416985959404]
無人航空機(UAV)ビデオにおける複数物体追跡(MOT)は、コンピュータビジョンにおける多様な用途において重要である。
時空間結合型多目的追跡フレームワーク(STCMOT)を提案する。
歴史的埋め込み機能を用いて,ReIDの表現と検出機能を逐次的にモデル化する。
我々のフレームワークはMOTAとIDF1メトリクスで新しい最先端のパフォーマンスを設定します。
論文 参考訳(メタデータ) (2024-09-17T14:34:18Z) - Learning Motion Blur Robust Vision Transformers with Dynamic Early Exit for Real-Time UAV Tracking [14.382072224997074]
トレーニング済みのViTバックボーンを使用したシングルストリームアーキテクチャでは、パフォーマンス、効率、堅牢性が改善されている。
リアルタイムなUAV追跡のためにTransformerブロックを動的に終了する適応型フレームワークにすることで、このフレームワークの効率を向上する。
また, 動きのぼかし処理におけるViTsの有効性も改善した。これは, UAV, 追跡対象の速さ, あるいはその両方によって生じるUAVトラッキングの共通問題である。
論文 参考訳(メタデータ) (2024-07-07T14:10:04Z) - Ensuring UAV Safety: A Vision-only and Real-time Framework for Collision Avoidance Through Object Detection, Tracking, and Distance Estimation [16.671696289301625]
本稿では,光学センサを用いた非協調航空車両の検出・追跡・距離推定のためのディープラーニングフレームワークを提案する。
本研究では,単眼カメラの入力のみを用いて,検出された空中物体の距離情報をリアルタイムで推定する手法を提案する。
論文 参考訳(メタデータ) (2024-05-10T18:06:41Z) - DORT: Modeling Dynamic Objects in Recurrent for Multi-Camera 3D Object
Detection and Tracking [67.34803048690428]
本稿では、この問題を解決するためにRecurrenT(DORT)の動的オブジェクトをモデル化することを提案する。
DORTは、重い計算負担を軽減する動き推定のために、オブジェクトワイズローカルボリュームを抽出する。
フレキシブルで実用的で、ほとんどのカメラベースの3Dオブジェクト検出器に差し込むことができる。
論文 参考訳(メタデータ) (2023-03-29T12:33:55Z) - Adaptive Multi-source Predictor for Zero-shot Video Object Segmentation [68.56443382421878]
ゼロショットビデオオブジェクトセグメンテーション(ZVOS)のための新しい適応型マルチソース予測器を提案する。
静的オブジェクト予測器では、RGBソースは、同時に深度および静注ソースに変換される。
実験の結果,提案モデルは3つのZVOSベンチマークにおいて最先端の手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-03-18T10:19:29Z) - Implicit Motion Handling for Video Camouflaged Object Detection [60.98467179649398]
本稿では,新しいビデオカモフラージュオブジェクト検出(VCOD)フレームワークを提案する。
短期的および長期的整合性を利用して、ビデオフレームからカモフラージュされたオブジェクトを検出する。
論文 参考訳(メタデータ) (2022-03-14T17:55:41Z) - End-to-end Deep Object Tracking with Circular Loss Function for Rotated
Bounding Box [68.8204255655161]
Transformer Multi-Head Attentionアーキテクチャに基づく新しいエンドツーエンドのディープラーニング手法を紹介します。
また,境界ボックスの重なりと向きを考慮に入れた新しいタイプの損失関数を提案する。
論文 参考訳(メタデータ) (2020-12-17T17:29:29Z) - FMODetect: Robust Detection and Trajectory Estimation of Fast Moving
Objects [110.29738581961955]
高速移動物体の検出と軌道推定のための最初の学習ベースアプローチを提案する。
提案手法は, 高速移動物体を軌道への切り離された距離関数として検出する。
シャープな外観推定のために,エネルギー最小化に基づくデブロワーリングを提案する。
論文 参考訳(メタデータ) (2020-12-15T11:05:34Z) - Perceiving Traffic from Aerial Images [86.994032967469]
本研究では,空中画像中の物体を検出するために,バタフライ検出器と呼ばれる物体検出手法を提案する。
UAVDT(UAVDT)とVisDrone 2019(VisDrone 2019)の2つのUAVデータセット上でButterfly Detectorを評価し、従来の最先端の手法よりも高速に動作し、かつリアルタイムに動作可能であることを示す。
論文 参考訳(メタデータ) (2020-09-16T11:37:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。