論文の概要: Neural Authorship Attribution: Stylometric Analysis on Large Language
Models
- arxiv url: http://arxiv.org/abs/2308.07305v1
- Date: Mon, 14 Aug 2023 17:46:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-15 12:07:35.943937
- Title: Neural Authorship Attribution: Stylometric Analysis on Large Language
Models
- Title(参考訳): ニューラルオーサシップの属性:大規模言語モデルにおけるスティロメトリ解析
- Authors: Tharindu Kumarage and Huan Liu
- Abstract要約: GPT-4、PaLM、Llamaのような大規模言語モデル(LLM)は、AIによるテキスト生成を著しく推進している。
誤用の可能性に対する懸念が高まっているため、AI生成テキストの鑑識の必要性が高まっている。
- 参考スコア(独自算出の注目度): 16.63955074133222
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large language models (LLMs) such as GPT-4, PaLM, and Llama have
significantly propelled the generation of AI-crafted text. With rising concerns
about their potential misuse, there is a pressing need for AI-generated-text
forensics. Neural authorship attribution is a forensic effort, seeking to trace
AI-generated text back to its originating LLM. The LLM landscape can be divided
into two primary categories: proprietary and open-source. In this work, we
delve into these emerging categories of LLMs, focusing on the nuances of neural
authorship attribution. To enrich our understanding, we carry out an empirical
analysis of LLM writing signatures, highlighting the contrasts between
proprietary and open-source models, and scrutinizing variations within each
group. By integrating stylometric features across lexical, syntactic, and
structural aspects of language, we explore their potential to yield
interpretable results and augment pre-trained language model-based classifiers
utilized in neural authorship attribution. Our findings, based on a range of
state-of-the-art LLMs, provide empirical insights into neural authorship
attribution, paving the way for future investigations aimed at mitigating the
threats posed by AI-generated misinformation.
- Abstract(参考訳): GPT-4、PaLM、Llamaのような大規模言語モデル(LLM)はAIによるテキスト生成を著しく推進している。
誤用の可能性に対する懸念が高まっているため、AI生成テキストの鑑識の必要性が高まっている。
ニューラルオーサシップの帰属は法医学的な取り組みであり、AI生成したテキストを元のLLMに遡ろうとしている。
LLMの展望はプロプライエタリとオープンソースという2つの主要なカテゴリに分けられる。
本研究では,ニューラルオーサシップ帰属のニュアンスに焦点をあてて,これらのLLMの新たなカテゴリを掘り下げる。
理解を深めるために、我々はllm書き込み署名の実証分析を行い、プロプライエタリモデルとオープンソースモデルの対比を強調し、各グループ内のバリエーションを精査する。
語彙的・構文的・構造的な言語特徴を統合することで,解釈可能な結果が得られる可能性を探究し,ニューラルオーサシップ属性に活用される事前学習された言語モデルに基づく分類器を強化する。
我々の発見は、最先端のLSMに基づいて、ニューラルネットワークの作者の帰属に関する実証的な洞察を提供し、AIが生成した誤報による脅威を軽減することを目的とした将来の調査の道を開く。
関連論文リスト
- Robust Detection of LLM-Generated Text: A Comparative Analysis [0.276240219662896]
大規模言語モデルは生命の多くの側面に広く統合することができ、その出力は全てのネットワークリソースを迅速に満たすことができる。
生成したテキストの強力な検出器を開発することがますます重要になっている。
この検出器は、これらの技術の潜在的な誤用を防ぎ、ソーシャルメディアなどのエリアを負の効果から保護するために不可欠である。
論文 参考訳(メタデータ) (2024-11-09T18:27:15Z) - A Bayesian Approach to Harnessing the Power of LLMs in Authorship Attribution [57.309390098903]
著者の属性は、文書の起源または著者を特定することを目的としている。
大きな言語モデル(LLM)とその深い推論能力と長距離テキストアソシエーションを維持する能力は、有望な代替手段を提供する。
IMDbおよびブログデータセットを用いた結果, 著者10名を対象に, 著者1名に対して, 85%の精度が得られた。
論文 参考訳(メタデータ) (2024-10-29T04:14:23Z) - Unveiling Large Language Models Generated Texts: A Multi-Level Fine-Grained Detection Framework [9.976099891796784]
大型言語モデル (LLM) は文法の修正、内容の拡張、文体の改良によって人間の書き方を変えてきた。
既存の検出方法は、主に単一機能分析とバイナリ分類に依存しているが、学術的文脈においてLLM生成テキストを効果的に識別することができないことが多い。
低レベル構造, 高レベル意味, 深層言語的特徴を統合することで, LLM生成テキストを検出する多レベルきめ細粒度検出フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-18T07:25:00Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
検索エンハンスメントは機械学習(ML)の幅広い範囲に拡張できる
この研究は、MLの様々な領域の文献を、現在の文献から欠落している一貫した表記で合成することで、このパラダイムの正式なフレームワークであるRetrieval-Enhanced Machine Learning (REML)を導入する。
本研究の目的は、様々な分野の研究者に対して、検索強化モデルの包括的、正式に構造化された枠組みを付与し、学際的な将来の研究を促進することである。
論文 参考訳(メタデータ) (2024-07-17T20:01:21Z) - Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
コネクショニストと象徴的人工知能(AI)の収束を探求する記事
従来、コネクショナリストAIはニューラルネットワークにフォーカスし、シンボリックAIはシンボリック表現とロジックを強調していた。
大型言語モデル(LLM)の最近の進歩は、人間の言語をシンボルとして扱う際のコネクショナリストアーキテクチャの可能性を強調している。
論文 参考訳(メタデータ) (2024-07-11T14:00:53Z) - Towards Next-Generation Steganalysis: LLMs Unleash the Power of Detecting Steganography [18.7168443402118]
言語ステガノグラフィーは、特にAI生成技術の出現と共に、メッセージを隠蔽するための便利な実装を提供する。
既存の手法は、記号統計学の側面から、ステガノグラフテキストと正規テキストの分布差を見つけることに限定されている。
本稿では,大規模言語モデル(LLM)のヒューマンライクなテキスト処理機能を用いて,人間の知覚との違いを実現することを提案する。
論文 参考訳(メタデータ) (2024-05-15T04:52:09Z) - Understanding Privacy Risks of Embeddings Induced by Large Language Models [75.96257812857554]
大きな言語モデルは、人工知能の初期の兆候を示すが、幻覚に苦しむ。
1つの有望な解決策は、外部知識を埋め込みとして保存し、LLMを検索強化世代に支援することである。
近年の研究では、事前学習された言語モデルによるテキスト埋め込みから、元のテキストを部分的に再構築できることが実験的に示されている。
論文 参考訳(メタデータ) (2024-04-25T13:10:48Z) - A Survey of AI-generated Text Forensic Systems: Detection, Attribution,
and Characterization [13.44566185792894]
AI生成テキスト鑑定は、LLMの誤用に対処する新たな分野である。
本稿では,検出,帰属,特性の3つの主要な柱に着目した詳細な分類法を紹介する。
我々は、AI生成テキスト法医学研究の利用可能なリソースを探究し、AI時代の法医学システムの進化的課題と今後の方向性について論じる。
論文 参考訳(メタデータ) (2024-03-02T09:39:13Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
大規模言語モデル(LLM)は、幅広いタスクにまたがる顕著な機能を示している。
自然言語で説明できる能力により、LLMは人間に与えられるパターンのスケールと複雑さを拡大することができる。
これらの新しい機能は、幻覚的な説明や膨大な計算コストなど、新しい課題を提起する。
論文 参考訳(メタデータ) (2024-01-30T17:38:54Z) - Evaluating, Understanding, and Improving Constrained Text Generation for Large Language Models [49.74036826946397]
本研究では,大言語モデル(LLM)の制約付きテキスト生成について検討する。
本研究は主に,制約を語彙型,構造型,関係型に分類するオープンソース LLM に重点を置いている。
その結果、LLMの能力と不足を照らし、制約を取り入れ、制約付きテキスト生成における将来の発展に対する洞察を提供する。
論文 参考訳(メタデータ) (2023-10-25T03:58:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。