論文の概要: Text Injection for Capitalization and Turn-Taking Prediction in Speech
Models
- arxiv url: http://arxiv.org/abs/2308.07395v1
- Date: Mon, 14 Aug 2023 18:28:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-16 15:10:19.977168
- Title: Text Injection for Capitalization and Turn-Taking Prediction in Speech
Models
- Title(参考訳): 音声モデルにおける大文字化とターンテイク予測のためのテキストインジェクション
- Authors: Shaan Bijwadia, Shuo-yiin Chang, Weiran Wang, Zhong Meng, Hao Zhang,
Tara N. Sainath
- Abstract要約: 本研究では,E2Eモデルでしばしば実行される非ASRタスクである補助タスクに対するテキストインジェクションの利用について検討する。
テキストインジェクション法により,長期データに対するキャピタライゼーション性能が向上することを示す。
- 参考スコア(独自算出の注目度): 45.94388391693112
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Text injection for automatic speech recognition (ASR), wherein unpaired
text-only data is used to supplement paired audio-text data, has shown
promising improvements for word error rate. This study examines the use of text
injection for auxiliary tasks, which are the non-ASR tasks often performed by
an E2E model. In this work, we use joint end-to-end and internal language model
training (JEIT) as our text injection algorithm to train an ASR model which
performs two auxiliary tasks. The first is capitalization, which is a
de-normalization task. The second is turn-taking prediction, which attempts to
identify whether a user has completed their conversation turn in a digital
assistant interaction. We show results demonstrating that our text injection
method boosts capitalization performance for long-tail data, and improves
turn-taking detection recall.
- Abstract(参考訳): 自動音声認識(ASR)のためのテキストインジェクションでは、ペア化された音声テキストデータを補うために、未ペアのテキストオンリーのデータを使用する。
本研究では,E2Eモデルでしばしば実行される非ASRタスクである補助タスクに対するテキストインジェクションの利用について検討する。
本研究では,2つの補助タスクを実行するASRモデルをトレーニングするために,テキストインジェクションアルゴリズムとして,エンドツーエンドと内部言語モデルトレーニング(JEIT)を併用する。
1つ目は資本化であり、非正規化タスクである。
第二にターンテイク予測(ターンテイク予測)は、ユーザがデジタルアシスタントのインタラクションで会話を完了したかどうかを識別しようとするものだ。
テキストインジェクション法により,長期データに対するキャピタライゼーション性能が向上し,ターンテイク検出リコールが向上することを示す。
関連論文リスト
- GRASS: Unified Generation Model for Speech-to-Semantic Tasks [7.044414457214718]
本稿では,音声データに対するタスク関連プロンプトに条件付きターゲットテキストを生成する統合エンドツーエンド(E2E)フレームワークを提案する。
提案モデルでは, 実体認識, 音声感情分析, 音声質問応答などを含む多くのベンチマークにおいて, 最先端のSOTA(State-of-the-art)結果が得られた。
音声合成タスクの微調整の今後の取り組みを容易にするため,命令データセットとコードをリリースする。
論文 参考訳(メタデータ) (2023-09-06T06:44:26Z) - Code-Switching Text Generation and Injection in Mandarin-English ASR [57.57570417273262]
業界で広く使われているストリーミングモデルTransformer-Transducer(T-T)の性能向上のためのテキスト生成とインジェクションについて検討する。
まず、コードスイッチングテキストデータを生成し、テキスト-to-Speech(TTS)変換または暗黙的に音声とテキストの潜在空間を結び付けることによって、T-Tモデルに生成されたテキストを明示的に注入する戦略を提案する。
実際のマンダリン・イングリッシュ音声の1,800時間を含むデータセットを用いて訓練したT-Tモデルの実験結果から,生成したコードスイッチングテキストを注入する手法により,T-Tモデルの性能が著しく向上することが示された。
論文 参考訳(メタデータ) (2023-03-20T09:13:27Z) - Speech-text based multi-modal training with bidirectional attention for
improved speech recognition [26.47071418582507]
ASRエンコーダ(ボット層)とテキストエンコーダ(テキストエンコーダ)をマルチモーダル学習法で共同学習するために,新しい双方向アテンション機構(BiAM)を提案する。
BiAMは特徴サンプリングレートの交換を促進することを目的としており、別の空間で測定すべきものに対する変換された特徴の品質を実現する。
Librispeech corpusの実験結果から、ペアデータ学習のみで最大6.15%のワードエラー率削減(WERR)を達成でき、また、より不適切なテキストデータを使用すると9.23%のWERRを実現することができる。
論文 参考訳(メタデータ) (2022-11-01T08:25:11Z) - SpeechUT: Bridging Speech and Text with Hidden-Unit for Encoder-Decoder
Based Speech-Text Pre-training [106.34112664893622]
本稿では,音声エンコーダとテキストデコーダの表現を共有単位エンコーダに接続する,統一モーダル音声単位テキスト事前学習モデルであるSpeechUTを提案する。
提案するSpeechUTは,自動音声認識(ASR)と音声翻訳(ST)タスクに基づいて微調整および評価を行う。
論文 参考訳(メタデータ) (2022-10-07T17:57:45Z) - Text-Aware End-to-end Mispronunciation Detection and Diagnosis [17.286013739453796]
誤認識検出・診断(MDD)技術はコンピュータ支援発音訓練システム(CAPT)の鍵となる要素である
本稿では,関係のないテキスト情報を抑えつつ,関連する音声特徴をより重要視するゲーティング戦略を提案する。
論文 参考訳(メタデータ) (2022-06-15T04:08:10Z) - Wav2Seq: Pre-training Speech-to-Text Encoder-Decoder Models Using Pseudo
Languages [58.43299730989809]
本稿では,音声データに対するエンコーダ・デコーダモデルの両部分を事前学習するための,最初の自己教師型アプローチであるWav2Seqを紹介する。
我々は、コンパクトな離散表現として擬似言語を誘導し、自己教師付き擬似音声認識タスクを定式化する。
このプロセスは独自のものであり、低コストの第2段階のトレーニングとして適用することができる。
論文 参考訳(メタデータ) (2022-05-02T17:59:02Z) - SLAM: A Unified Encoder for Speech and Language Modeling via Speech-Text
Joint Pre-Training [33.02912456062474]
我々は、ラベルなしテキストのBERT目的とラベルなし音声のw2v-BERT目的とを併用した単一のエンコーダを構築する。
プレトレーニング中に音声データとテキストデータの両方を組み込むことで、CoVoST2音声翻訳における下流品質が大幅に向上することが実証された。
論文 参考訳(メタデータ) (2021-10-20T00:59:36Z) - Direct speech-to-speech translation with discrete units [64.19830539866072]
本稿では、中間テキスト生成に頼ることなく、ある言語から別の言語に音声を変換する直接音声音声翻訳(S2ST)モデルを提案する。
そこで本稿では,ラベルなし音声コーパスから学習した自己教師付き離散表現の予測を提案する。
対象のテキスト書き起こしが利用可能となると、同一の推論パスで2つのモード出力(音声とテキスト)を同時に生成できる、共同音声認識とテキストトレーニングを備えたマルチタスク学習フレームワークを設計する。
論文 参考訳(メタデータ) (2021-07-12T17:40:43Z) - A General Multi-Task Learning Framework to Leverage Text Data for Speech
to Text Tasks [36.216979991706594]
本稿では,自動音声認識(ASR)と音声翻訳(ST)タスクのためのテキストデータを活用する汎用マルチタスク学習フレームワークを提案する。
テキスト入力を音素シーケンスとして表現することで、音声とテキスト入力の差を減らし、テキストコーパスからテキストタスクへの知識伝達を促進できることを示す。
論文 参考訳(メタデータ) (2020-10-21T22:40:43Z) - Improving Readability for Automatic Speech Recognition Transcription [50.86019112545596]
我々は、可読性のためのASRポストプロセッシング(APR)と呼ばれる新しいNLPタスクを提案する。
APRは、ノイズの多いASR出力を、話者の意味を保ちながら、人間や下流タスクのための読みやすいテキストに変換することを目的としている。
我々は,いくつかのオープンソースモデルと適応型事前学習モデルに基づく微調整モデルと,従来のパイプライン手法との比較を行った。
論文 参考訳(メタデータ) (2020-04-09T09:26:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。