Probabilistic MIMO U-Net: Efficient and Accurate Uncertainty Estimation
for Pixel-wise Regression
- URL: http://arxiv.org/abs/2308.07477v1
- Date: Mon, 14 Aug 2023 22:08:28 GMT
- Title: Probabilistic MIMO U-Net: Efficient and Accurate Uncertainty Estimation
for Pixel-wise Regression
- Authors: Anton Baumann, Thomas Ro{\ss}berg, Michael Schmitt
- Abstract summary: Uncertainty estimation in machine learning is paramount for enhancing the reliability and interpretability of predictive models.
We present an adaptation of the Multiple-Input Multiple-Output (MIMO) framework for pixel-wise regression tasks.
- Score: 1.4528189330418977
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Uncertainty estimation in machine learning is paramount for enhancing the
reliability and interpretability of predictive models, especially in
high-stakes real-world scenarios. Despite the availability of numerous methods,
they often pose a trade-off between the quality of uncertainty estimation and
computational efficiency. Addressing this challenge, we present an adaptation
of the Multiple-Input Multiple-Output (MIMO) framework -- an approach
exploiting the overparameterization of deep neural networks -- for pixel-wise
regression tasks. Our MIMO variant expands the applicability of the approach
from simple image classification to broader computer vision domains. For that
purpose, we adapted the U-Net architecture to train multiple subnetworks within
a single model, harnessing the overparameterization in deep neural networks.
Additionally, we introduce a novel procedure for synchronizing subnetwork
performance within the MIMO framework. Our comprehensive evaluations of the
resulting MIMO U-Net on two orthogonal datasets demonstrate comparable accuracy
to existing models, superior calibration on in-distribution data, robust
out-of-distribution detection capabilities, and considerable improvements in
parameter size and inference time. Code available at
github.com/antonbaumann/MIMO-Unet
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Gradient-free variational learning with conditional mixture networks [39.827869318925494]
Conditional mixture networks (CMNs) are suitable for fast, gradient-free inference and can solve complex classification tasks.
We validate this approach by training two-layer CMNs on standard benchmarks from the UCI repository.
Our method, CAVI-CMN, achieves competitive and often superior predictive accuracy compared to maximum likelihood estimation (MLE) with backpropagation.
arXiv Detail & Related papers (2024-08-29T10:43:55Z) - MCDFN: Supply Chain Demand Forecasting via an Explainable Multi-Channel Data Fusion Network Model [0.0]
We introduce the Multi-Channel Data Fusion Network (MCDFN), a hybrid architecture that integrates CNN, Long Short-Term Memory networks (LSTM), and Gated Recurrent Units (GRU)
Our comparative benchmarking demonstrates that MCDFN outperforms seven other deep-learning models.
This research advances demand forecasting methodologies and offers practical guidelines for integrating MCDFN into supply chain systems.
arXiv Detail & Related papers (2024-05-24T14:30:00Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - A deep learning based surrogate model for stochastic simulators [0.0]
We propose a deep learning-based surrogate model for simulators.
We utilize conditional maximum mean discrepancy (CMMD) as the loss-function.
Results obtained indicate the excellent performance of the proposed approach.
arXiv Detail & Related papers (2021-10-24T11:38:47Z) - PDC-Net+: Enhanced Probabilistic Dense Correspondence Network [161.76275845530964]
Enhanced Probabilistic Dense Correspondence Network, PDC-Net+, capable of estimating accurate dense correspondences.
We develop an architecture and an enhanced training strategy tailored for robust and generalizable uncertainty prediction.
Our approach obtains state-of-the-art results on multiple challenging geometric matching and optical flow datasets.
arXiv Detail & Related papers (2021-09-28T17:56:41Z) - Improving Video Instance Segmentation by Light-weight Temporal
Uncertainty Estimates [11.580916951856256]
We present a time-dynamic approach to model uncertainties of instance segmentation networks.
We apply this approach to the detection of false positives and the estimation of prediction quality.
The proposed method only requires a readily trained neural network and video sequence input.
arXiv Detail & Related papers (2020-12-14T13:39:05Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.