Imitation Learning of MPC with Neural Networks: Error Guarantees and Sparsification
- URL: http://arxiv.org/abs/2501.03671v1
- Date: Tue, 07 Jan 2025 10:18:37 GMT
- Title: Imitation Learning of MPC with Neural Networks: Error Guarantees and Sparsification
- Authors: Hendrik Alsmeier, Lukas Theiner, Anton Savchenko, Ali Mesbah, Rolf Findeisen,
- Abstract summary: We present a framework for bounding the approximation error in imitation model predictive controllers utilizing neural networks.
We discuss how this method can be used to design a stable neural network controller with performance guarantees.
- Score: 5.260346080244568
- License:
- Abstract: This paper presents a framework for bounding the approximation error in imitation model predictive controllers utilizing neural networks. Leveraging the Lipschitz properties of these neural networks, we derive a bound that guides dataset design to ensure the approximation error remains at chosen limits. We discuss how this method can be used to design a stable neural network controller with performance guarantees employing existing robust model predictive control approaches for data generation. Additionally, we introduce a training adjustment, which is based on the sensitivities of the optimization problem and reduces dataset density requirements based on the derived bounds. We verify that the proposed augmentation results in improvements to the network's predictive capabilities and a reduction of the Lipschitz constant. Moreover, on a simulated inverted pendulum problem, we show that the approach results in a closer match of the closed-loop behavior between the imitation and the original model predictive controller.
Related papers
- Neural Conformal Control for Time Series Forecasting [54.96087475179419]
We introduce a neural network conformal prediction method for time series that enhances adaptivity in non-stationary environments.
Our approach acts as a neural controller designed to achieve desired target coverage, leveraging auxiliary multi-view data with neural network encoders.
We empirically demonstrate significant improvements in coverage and probabilistic accuracy, and find that our method is the only one that combines good calibration with consistency in prediction intervals.
arXiv Detail & Related papers (2024-12-24T03:56:25Z) - Variational Bayesian Bow tie Neural Networks with Shrinkage [0.276240219662896]
We build a relaxed version of the standard feed-forward rectified neural network.
We employ Polya-Gamma data augmentation tricks to render a conditionally linear and Gaussian model.
We derive a variational inference algorithm that avoids distributional assumptions and independence across layers.
arXiv Detail & Related papers (2024-11-17T17:36:30Z) - Mapping back and forth between model predictive control and neural networks [0.0]
Model predictive control (MPC) for linear systems with quadratic costs and linear constraints is shown to admit an exact representation as an implicit neural network.
A method to "unravel" the implicit neural network of MPC into an explicit one is also introduced.
arXiv Detail & Related papers (2024-04-18T09:29:08Z) - Learning to Precode for Integrated Sensing and Communications Systems [11.689567114100514]
We present an unsupervised learning neural model to design transmit precoders for ISAC systems.
We show that the proposed method outperforms traditional optimization-based methods in presence of channel estimation errors.
arXiv Detail & Related papers (2023-03-11T11:24:18Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
We consider deep neural networks for solving inverse problems that are robust to forward model mis-specifications.
We design a new robust deep neural network architecture by applying algorithm unfolding techniques to a robust version of the underlying recovery problem.
The proposed REST network is shown to outperform state-of-the-art model-based and data-driven algorithms in both compressive sensing and radar imaging problems.
arXiv Detail & Related papers (2021-10-20T06:15:45Z) - Robust Implicit Networks via Non-Euclidean Contractions [63.91638306025768]
Implicit neural networks show improved accuracy and significant reduction in memory consumption.
They can suffer from ill-posedness and convergence instability.
This paper provides a new framework to design well-posed and robust implicit neural networks.
arXiv Detail & Related papers (2021-06-06T18:05:02Z) - Performance Bounds for Neural Network Estimators: Applications in Fault
Detection [2.388501293246858]
We exploit recent results in quantifying the robustness of neural networks to construct and tune a model-based anomaly detector.
In tuning, we specifically provide upper bounds on the rate of false alarms expected under normal operation.
arXiv Detail & Related papers (2021-03-22T19:23:08Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Neural Control Variates [71.42768823631918]
We show that a set of neural networks can face the challenge of finding a good approximation of the integrand.
We derive a theoretically optimal, variance-minimizing loss function, and propose an alternative, composite loss for stable online training in practice.
Specifically, we show that the learned light-field approximation is of sufficient quality for high-order bounces, allowing us to omit the error correction and thereby dramatically reduce the noise at the cost of negligible visible bias.
arXiv Detail & Related papers (2020-06-02T11:17:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.