Bayesian Modelling Approaches for Quantum States -- The Ultimate
Gaussian Process States Handbook
- URL: http://arxiv.org/abs/2308.07669v2
- Date: Wed, 16 Aug 2023 09:18:48 GMT
- Title: Bayesian Modelling Approaches for Quantum States -- The Ultimate
Gaussian Process States Handbook
- Authors: Yannic Rath
- Abstract summary: This thesis discusses novel tools and techniques for the (classical) modelling of quantum many-body wavefunctions.
It is outlined how synergies with standard machine learning approaches can be exploited to enable an automated inference of the most relevant intrinsic characteristics.
The resulting model carries a high degree of interpretability and offers an easily applicable tool for study of quantum systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Capturing the correlation emerging between constituents of many-body systems
accurately is one of the key challenges for the appropriate description of
various systems whose properties are underpinned by quantum mechanical
fundamentals. This thesis discusses novel tools and techniques for the
(classical) modelling of quantum many-body wavefunctions with the ultimate goal
to introduce a universal framework for finding accurate representations from
which system properties can be extracted efficiently. It is outlined how
synergies with standard machine learning approaches can be exploited to enable
an automated inference of the most relevant intrinsic characteristics through
rigorous Bayesian regression techniques. Based on the probabilistic framework
forming the foundation of the introduced ansatz, coined the Gaussian Process
State, different compression techniques are explored to extract numerically
feasible representations of relevant target states within stochastic schemes.
By following intuitively motivated design principles, the resulting model
carries a high degree of interpretability and offers an easily applicable tool
for the numerical study of quantum systems, including ones which are
notoriously difficult to simulate due to a strong intrinsic correlation. The
practical applicability of the Gaussian Process States framework is
demonstrated within several benchmark applications, in particular, ground state
approximations for prototypical quantum lattice models, Fermi-Hubbard models
and $J_1-J_2$ models, as well as simple ab-initio quantum chemical systems.
Related papers
- Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
We introduce an unsupervised machine learning approach to determine the minimal set of parameters required to describe a process.
Our approach enables for the autonomous discovery of unknown parameters describing processes.
arXiv Detail & Related papers (2023-07-21T14:25:06Z) - Higher-order topological kernels via quantum computation [68.8204255655161]
Topological data analysis (TDA) has emerged as a powerful tool for extracting meaningful insights from complex data.
We propose a quantum approach to defining Betti kernels, which is based on constructing Betti curves with increasing order.
arXiv Detail & Related papers (2023-07-14T14:48:52Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
We build over a proposed framework for evaluating the generalization performance of generative models.
We establish the first comparative race towards practical quantum advantage (PQA) between classical and quantum generative models.
Our results suggest that QCBMs are more efficient in the data-limited regime than the other state-of-the-art classical generative models.
arXiv Detail & Related papers (2023-03-27T22:48:28Z) - A framework for efficient ab initio electronic structure with Gaussian
Process States [0.0]
We present a framework for the efficient simulation of realistic fermionic systems with modern machine learning inspired representations of quantum many-body states.
We show competitive accuracy for systems with up to 64 electrons, including a simplified (yet fully ab initio) model of the Mott transition in three-dimensional hydrogen.
arXiv Detail & Related papers (2023-02-02T13:40:38Z) - Provably efficient variational generative modeling of quantum many-body
systems via quantum-probabilistic information geometry [3.5097082077065003]
We introduce a generalization of quantum natural gradient descent to parameterized mixed states.
We also provide a robust first-order approximating algorithm, Quantum-Probabilistic Mirror Descent.
Our approaches extend previously sample-efficient techniques to allow for flexibility in model choice.
arXiv Detail & Related papers (2022-06-09T17:58:15Z) - Generalization Metrics for Practical Quantum Advantage in Generative
Models [68.8204255655161]
Generative modeling is a widely accepted natural use case for quantum computers.
We construct a simple and unambiguous approach to probe practical quantum advantage for generative modeling by measuring the algorithm's generalization performance.
Our simulation results show that our quantum-inspired models have up to a $68 times$ enhancement in generating unseen unique and valid samples.
arXiv Detail & Related papers (2022-01-21T16:35:35Z) - Probing non-Markovian quantum dynamics with data-driven analysis: Beyond
"black-box" machine learning models [0.0]
We propose a data-driven approach to the analysis of the non-Markovian dynamics of open quantum systems.
Our method allows, on the one hand, capturing the effective dimension of the environment and the spectrum of the joint system-environment quantum dynamics.
We demonstrate the performance of the proposed approach with various models of open quantum systems.
arXiv Detail & Related papers (2021-03-26T14:27:33Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Autoregressive Transformer Neural Network for Simulating Open Quantum Systems via a Probabilistic Formulation [5.668795025564699]
We present an approach for tackling open quantum system dynamics.
We compactly represent quantum states with autoregressive transformer neural networks.
Efficient algorithms have been developed to simulate the dynamics of the Liouvillian superoperator.
arXiv Detail & Related papers (2020-09-11T18:00:00Z) - Gaussian Process States: A data-driven representation of quantum
many-body physics [59.7232780552418]
We present a novel, non-parametric form for compactly representing entangled many-body quantum states.
The state is found to be highly compact, systematically improvable and efficient to sample.
It is also proven to be a universal approximator' for quantum states, able to capture any entangled many-body state with increasing data set size.
arXiv Detail & Related papers (2020-02-27T15:54:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.