論文の概要: Enhancing Network Initialization for Medical AI Models Using
Large-Scale, Unlabeled Natural Images
- arxiv url: http://arxiv.org/abs/2308.07688v1
- Date: Tue, 15 Aug 2023 10:37:13 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-16 13:23:20.713975
- Title: Enhancing Network Initialization for Medical AI Models Using
Large-Scale, Unlabeled Natural Images
- Title(参考訳): 大規模・未ラベル自然画像を用いた医療AIモデルのネットワーク初期化の促進
- Authors: Soroosh Tayebi Arasteh, Leo Misera, Jakob Nikolas Kather, Daniel
Truhn, Sven Nebelung
- Abstract要約: 自己教師付き学習(SSL)は胸部X線写真に適用して、堅牢な特徴を学習することができる。
我々は6つの大規模なグローバルデータセットから800,000個の胸部X線写真を用いてアプローチを検証した。
- 参考スコア(独自算出の注目度): 1.883452979588382
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Pre-training datasets, like ImageNet, have become the gold standard in
medical image analysis. However, the emergence of self-supervised learning
(SSL), which leverages unlabeled data to learn robust features, presents an
opportunity to bypass the intensive labeling process. In this study, we
explored if SSL for pre-training on non-medical images can be applied to chest
radiographs and how it compares to supervised pre-training on non-medical
images and on medical images. We utilized a vision transformer and initialized
its weights based on (i) SSL pre-training on natural images (DINOv2), (ii) SL
pre-training on natural images (ImageNet dataset), and (iii) SL pre-training on
chest radiographs from the MIMIC-CXR database. We tested our approach on over
800,000 chest radiographs from six large global datasets, diagnosing more than
20 different imaging findings. Our SSL pre-training on curated images not only
outperformed ImageNet-based pre-training (P<0.001 for all datasets) but, in
certain cases, also exceeded SL on the MIMIC-CXR dataset. Our findings suggest
that selecting the right pre-training strategy, especially with SSL, can be
pivotal for improving artificial intelligence (AI)'s diagnostic accuracy in
medical imaging. By demonstrating the promise of SSL in chest radiograph
analysis, we underline a transformative shift towards more efficient and
accurate AI models in medical imaging.
- Abstract(参考訳): ImageNetのような事前トレーニングデータセットは、医療画像分析におけるゴールドスタンダードとなっている。
しかし、ラベルのないデータを利用して堅牢な特徴を学習する自己教師付き学習(SSL)の出現は、集中的なラベリングプロセスをバイパスする機会を与える。
本研究では,非医用画像に対する事前トレーニングのためのSSLが胸部X線写真に適用可能か,非医用画像および医用画像に対する教師付き事前トレーニングとの比較を行った。
視覚トランスフォーマーを利用して 重みを初期化しました
(i)自然画像によるSSL事前トレーニング(DINOv2)
(ii)自然画像(画像Netデータセット)におけるSL事前学習
3)MIMIC-CXRデータベースからの胸部X線写真によるSL事前訓練
我々は6つの大きなグローバルデータセットから800,000以上の胸部X線撮影を行い、20以上の異なる画像所見を診断した。
我々のSSL事前トレーニングは、ImageNetベースの事前トレーニング(P<0.001)に勝るだけでなく、MIMIC-CXRデータセット上のSLを上回りました。
以上の結果から,適切な事前トレーニング戦略,特にSSLを選択することは,医用画像における人工知能(AI)の診断精度の向上に重要であることが示唆された。
胸部x線写真解析におけるsslの有望性を示すことで、医療画像におけるより効率的で正確なaiモデルへの転換を示唆する。
関連論文リスト
- Self-supervised learning for skin cancer diagnosis with limited training data [0.196629787330046]
自己教師付き学習(SSL)は、限られたトレーニングデータを持つシナリオに対するImageNetの標準教師付き事前トレーニングの代替である。
textitfurther SSL をタスク固有のデータセットで事前トレーニングし、その実装は教師あり転送学習によって動機づけられる。
タスク固有のデータに対するより最小限のSSL事前トレーニングは、限られたラベル付きデータによる医療画像分類タスクにおいて、ImageNet上の大規模なSSL事前トレーニングと同じくらい効果的である。
論文 参考訳(メタデータ) (2024-01-01T08:11:38Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
本研究は、3Dラジオグラフィ画像のための効果的な事前学習フレームワークの設計に焦点をあてる。
ローカルマスキングと低レベルの摂動の組み合わせによって生成された破壊から、オリジナルのイメージを再構築しようとする事前トレーニングフレームワークであるDisruptive Autoencodersを紹介する。
提案する事前トレーニングフレームワークは、複数のダウンストリームタスクでテストされ、最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-07-31T17:59:42Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
ディープラーニングを医療分野に適用する上で最大の課題は、トレーニングデータの提供である。
データ拡張は、限られたデータセットに直面した時に機械学習で使用される典型的な方法論である。
本研究は, 新型コロナウイルスの胸部X線画像セットを限定して, StyleGAN2-ADAモデルを用いて訓練するものである。
論文 参考訳(メタデータ) (2023-04-18T15:39:58Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
本稿では,視覚および言語入力を共通空間に埋め込んだ医用視覚言語モデル(VLM)について検討する。
本稿では,新しい画像領域やテキスト領域への汎用事前学習モデルの適用など,低データ性能向上のためのいくつかの候補手法について検討する。
テキスト・ツー・イメージ検索をベンチマークとして,2つの胸部X線および放射線学的報告を用いた可変サイズのトレーニングデータセットを用いて,これらの手法の性能評価を行った。
論文 参考訳(メタデータ) (2023-03-30T18:20:00Z) - Exploring Self-Supervised Representation Learning For Low-Resource
Medical Image Analysis [2.458658951393896]
小型医用画像データセットにおける自己教師付き学習アルゴリズムの適用性について検討する。
ドメイン内の低リソースSSL事前トレーニングは、大規模なデータセットから学習を移行するための競合的なパフォーマンスをもたらす可能性がある。
論文 参考訳(メタデータ) (2023-03-03T22:26:17Z) - Self-Supervised Curricular Deep Learning for Chest X-Ray Image
Classification [1.6631602844999727]
Self-Supervised Learning Pretrainingは、ImageNetでスクラッチからトレーニングされたモデル、あるいは事前トレーニングされたモデルのパフォーマンスを向上する。
SSL-pretrained モデルは肺の領域において高い注意力を示す。
論文 参考訳(メタデータ) (2023-01-25T16:45:13Z) - PCRLv2: A Unified Visual Information Preservation Framework for
Self-supervised Pre-training in Medical Image Analysis [56.63327669853693]
本稿では,ピクセルレベルの情報を高レベルなセマンティクスに明示的にエンコードするための画素復元タスクを提案する。
また,画像理解を支援する強力なツールであるスケール情報の保存についても検討する。
提案されている統合SSLフレームワークは、さまざまなタスクで自己管理されたフレームワークを超越している。
論文 参考訳(メタデータ) (2023-01-02T17:47:27Z) - Generating and Weighting Semantically Consistent Sample Pairs for
Ultrasound Contrastive Learning [10.631361618707214]
よく注釈付けされた医療データセットにより、ディープニューラルネットワーク(DNN)は、病変に関連する特徴を抽出する上で強力なパワーを得ることができる。
ImageNetに基づくモデル事前トレーニングは、データ量に制限がある場合に、より良い一般化を得るための一般的なプラクティスである。
本研究では,医療用USアプリケーションの領域ギャップを低減するために,ImageNetの代わりに超音波(US)ドメインを事前訓練する。
論文 参考訳(メタデータ) (2022-12-08T06:24:08Z) - SB-SSL: Slice-Based Self-Supervised Transformers for Knee Abnormality
Classification from MRI [5.199134881541244]
膝関節MRIスキャンを用いて異常の分類を行うためのスライスベース自己教師型ディープラーニングフレームワーク(SBSSL)を提案する。
限られた症例(1000例)では,前十字靭帯断裂を89.17%,AUC0.954。
論文 参考訳(メタデータ) (2022-08-29T23:08:41Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。