Dynamic Low-Rank Instance Adaptation for Universal Neural Image
Compression
- URL: http://arxiv.org/abs/2308.07733v1
- Date: Tue, 15 Aug 2023 12:17:46 GMT
- Title: Dynamic Low-Rank Instance Adaptation for Universal Neural Image
Compression
- Authors: Yue Lv, Jinxi Xiang, Jun Zhang, Wenming Yang, Xiao Han, Wei Yang
- Abstract summary: We propose a low-rank adaptation approach to address the rate-distortion drop observed in out-of-domain datasets.
Our proposed method exhibits universality across diverse image datasets.
- Score: 33.92792778925365
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The latest advancements in neural image compression show great potential in
surpassing the rate-distortion performance of conventional standard codecs.
Nevertheless, there exists an indelible domain gap between the datasets
utilized for training (i.e., natural images) and those utilized for inference
(e.g., artistic images). Our proposal involves a low-rank adaptation approach
aimed at addressing the rate-distortion drop observed in out-of-domain
datasets. Specifically, we perform low-rank matrix decomposition to update
certain adaptation parameters of the client's decoder. These updated
parameters, along with image latents, are encoded into a bitstream and
transmitted to the decoder in practical scenarios. Due to the low-rank
constraint imposed on the adaptation parameters, the resulting bit rate
overhead is small. Furthermore, the bit rate allocation of low-rank adaptation
is \emph{non-trivial}, considering the diverse inputs require varying
adaptation bitstreams. We thus introduce a dynamic gating network on top of the
low-rank adaptation method, in order to decide which decoder layer should
employ adaptation. The dynamic adaptation network is optimized end-to-end using
rate-distortion loss. Our proposed method exhibits universality across diverse
image datasets. Extensive results demonstrate that this paradigm significantly
mitigates the domain gap, surpassing non-adaptive methods with an average
BD-rate improvement of approximately $19\%$ across out-of-domain images.
Furthermore, it outperforms the most advanced instance adaptive methods by
roughly $5\%$ BD-rate. Ablation studies confirm our method's ability to
universally enhance various image compression architectures.
Related papers
- A Rate-Distortion-Classification Approach for Lossy Image Compression [0.0]
In lossy image compression, the objective is to achieve minimal signal distortion while compressing images to a specified bit rate.
To bridge the gap between image compression and visual analysis, we propose a Rate-Distortion-Classification (RDC) model for lossy image compression.
arXiv Detail & Related papers (2024-05-06T14:11:36Z) - Laplacian-guided Entropy Model in Neural Codec with Blur-dissipated Synthesis [10.428185253933004]
We replace Gaussian decoders with a non-isotropic diffusion model at the decoder side.
Our framework is equipped with a novel entropy model that accurately models probability distribution latent representation.
Our experiments demonstrate that our framework yields better perceptual quality compared to cutting-edge generative entropy-based codecs.
arXiv Detail & Related papers (2024-03-24T18:33:16Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - Progressive Learning with Visual Prompt Tuning for Variable-Rate Image
Compression [60.689646881479064]
We propose a progressive learning paradigm for transformer-based variable-rate image compression.
Inspired by visual prompt tuning, we use LPM to extract prompts for input images and hidden features at the encoder side and decoder side, respectively.
Our model outperforms all current variable image methods in terms of rate-distortion performance and approaches the state-of-the-art fixed image compression methods trained from scratch.
arXiv Detail & Related papers (2023-11-23T08:29:32Z) - High-Fidelity Variable-Rate Image Compression via Invertible Activation
Transformation [24.379052026260034]
We propose the Invertible Activation Transformation (IAT) module to tackle the issue of high-fidelity fine variable-rate image compression.
IAT and QLevel together give the image compression model the ability of fine variable-rate control while better maintaining the image fidelity.
Our method outperforms the state-of-the-art variable-rate image compression method by a large margin, especially after multiple re-encodings.
arXiv Detail & Related papers (2022-09-12T07:14:07Z) - Reducing The Amortization Gap of Entropy Bottleneck In End-to-End Image
Compression [2.1485350418225244]
End-to-end deep trainable models are about to exceed the performance of the traditional handcrafted compression techniques on videos and images.
We propose a simple yet efficient instance-based parameterization method to reduce this amortization gap at a minor cost.
arXiv Detail & Related papers (2022-09-02T11:43:45Z) - Estimating the Resize Parameter in End-to-end Learned Image Compression [50.20567320015102]
We describe a search-free resizing framework that can further improve the rate-distortion tradeoff of recent learned image compression models.
Our results show that our new resizing parameter estimation framework can provide Bjontegaard-Delta rate (BD-rate) improvement of about 10% against leading perceptual quality engines.
arXiv Detail & Related papers (2022-04-26T01:35:02Z) - Neural JPEG: End-to-End Image Compression Leveraging a Standard JPEG
Encoder-Decoder [73.48927855855219]
We propose a system that learns to improve the encoding performance by enhancing its internal neural representations on both the encoder and decoder ends.
Experiments demonstrate that our approach successfully improves the rate-distortion performance over JPEG across various quality metrics.
arXiv Detail & Related papers (2022-01-27T20:20:03Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Implicit Neural Representations (INRs) have gained attention as a novel and effective representation for various data types.
We propose the first comprehensive compression pipeline based on INRs including quantization, quantization-aware retraining and entropy coding.
We find that our approach to source compression with INRs vastly outperforms similar prior work.
arXiv Detail & Related papers (2021-12-08T13:02:53Z) - Substitutional Neural Image Compression [48.20906717052056]
Substitutional Neural Image Compression (SNIC) is a general approach for enhancing any neural image compression model.
It boosts compression performance toward a flexible distortion metric and enables bit-rate control using a single model instance.
arXiv Detail & Related papers (2021-05-16T20:53:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.