論文の概要: Multi-scale Promoted Self-adjusting Correlation Learning for Facial
Action Unit Detection
- arxiv url: http://arxiv.org/abs/2308.07770v1
- Date: Tue, 15 Aug 2023 13:43:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-16 12:40:51.754674
- Title: Multi-scale Promoted Self-adjusting Correlation Learning for Facial
Action Unit Detection
- Title(参考訳): 顔行動単位検出のためのマルチスケール自己調整相関学習
- Authors: Xin Liu, Kaishen Yuan, Xuesong Niu, Jingang Shi, Zitong Yu, Huanjing
Yue, Jingyu Yang
- Abstract要約: AU(Facial Action Unit)検出は、感情コンピューティングと社会ロボティクスにおいて重要なタスクである。
以前の方法では、専門家の経験や特定のベンチマークの統計規則に基づいて、固定されたAU相関を用いた。
本稿では,自己調整型AU相関学習(SACL)手法を提案する。
- 参考スコア(独自算出の注目度): 37.841035367349434
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Facial Action Unit (AU) detection is a crucial task in affective computing
and social robotics as it helps to identify emotions expressed through facial
expressions. Anatomically, there are innumerable correlations between AUs,
which contain rich information and are vital for AU detection. Previous methods
used fixed AU correlations based on expert experience or statistical rules on
specific benchmarks, but it is challenging to comprehensively reflect complex
correlations between AUs via hand-crafted settings. There are alternative
methods that employ a fully connected graph to learn these dependencies
exhaustively. However, these approaches can result in a computational explosion
and high dependency with a large dataset. To address these challenges, this
paper proposes a novel self-adjusting AU-correlation learning (SACL) method
with less computation for AU detection. This method adaptively learns and
updates AU correlation graphs by efficiently leveraging the characteristics of
different levels of AU motion and emotion representation information extracted
in different stages of the network. Moreover, this paper explores the role of
multi-scale learning in correlation information extraction, and design a simple
yet effective multi-scale feature learning (MSFL) method to promote better
performance in AU detection. By integrating AU correlation information with
multi-scale features, the proposed method obtains a more robust feature
representation for the final AU detection. Extensive experiments show that the
proposed method outperforms the state-of-the-art methods on widely used AU
detection benchmark datasets, with only 28.7\% and 12.0\% of the parameters and
FLOPs of the best method, respectively. The code for this method is available
at \url{https://github.com/linuxsino/Self-adjusting-AU}.
- Abstract(参考訳): AU(Facial Action Unit)検出は、表情によって表現される感情の識別を助けるため、感情コンピューティングや社会ロボティクスにおいて重要なタスクである。
解剖学的には、豊富な情報を含み、AU検出に不可欠であるAUの間には無数の相関関係がある。
従来の手法では、専門家の経験に基づく固定au相関や特定のベンチマークの統計規則を用いたが、手作りの設定でaus間の複雑な相関を包括的に反映することは困難である。
これらの依存関係を徹底的に学習するために、完全に連結されたグラフを使う別の方法がある。
しかし、これらのアプローチは大きなデータセットで計算爆発と高い依存性をもたらす可能性がある。
これらの課題に対処するために,AU検出の少ない自己調整型AU相関学習(SACL)手法を提案する。
ネットワークの異なるステージで抽出されたau動作の異なるレベルと感情表現情報の特性を効率的に活用し、au相関グラフを適応的に学習し更新する。
さらに,相関情報抽出におけるマルチスケール学習の役割を考察し,単純かつ効果的なマルチスケール特徴学習(msfl)法を考案し,au検出の性能向上を図る。
AU相関情報をマルチスケールの特徴と統合することにより、最終的なAU検出のためのより堅牢な特徴表現を得る。
広範な実験により,提案手法は,au検出ベンチマークデータセットにおいて,最良手法のパラメータとフラップの28.7\%と12.0\%で,最先端の手法よりも優れていることがわかった。
このメソッドのコードは \url{https://github.com/linuxsino/self-adjusting-au} で入手できる。
関連論文リスト
- Anchor-aware Deep Metric Learning for Audio-visual Retrieval [11.675472891647255]
Metric Learningは、基礎となるデータ構造を捕捉し、オーディオ・ビジュアル・クロスモーダル検索(AV-CMR)のようなタスクの性能を向上させることを目的としている。
近年の研究では、トレーニング中に埋め込み空間から影響のあるデータポイントを選択するためのサンプリング手法が採用されている。
しかし、トレーニングデータポイントの不足のため、モデルトレーニングはスペースを完全に探索することができない。
本稿では,この課題に対処するために,AADML(Anchor-aware Deep Metric Learning)手法を提案する。
論文 参考訳(メタデータ) (2024-04-21T22:44:44Z) - C-ICL: Contrastive In-context Learning for Information Extraction [54.39470114243744]
c-ICLは、正しいサンプル構築と間違ったサンプル構築の両方を活用して、コンテキスト内学習のデモを作成する、新しい数ショット技術である。
各種データセットに対する実験により,c-ICLは従来の数発のインコンテキスト学習法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-02-17T11:28:08Z) - Learning Contrastive Feature Representations for Facial Action Unit Detection [13.834540490373818]
顔アクションユニット(AU)検出は、AUが活性化する際の微妙な特徴差を検出するという課題に長年遭遇してきた。
本稿では、自己教師付き信号と教師付き信号の両方を組み込んだAU検出を目的とした、新しいコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-09T03:48:20Z) - Local Region Perception and Relationship Learning Combined with Feature
Fusion for Facial Action Unit Detection [12.677143408225167]
ABAW(Affective Behavior Analysis in the-wild)に関するCVPR 2023コンペティションについて紹介する。
具体的には、AU検出に関連する顔の局所的特徴を効果的に抽出するために、局所的知覚モジュールを用いる。
また、グラフニューラルネットワークに基づくリレーショナル学習モジュールを使用して、AU間の関係をキャプチャする。
論文 参考訳(メタデータ) (2023-03-15T11:59:24Z) - Self-supervised Facial Action Unit Detection with Region and Relation
Learning [5.182661263082065]
地域と関係学習を用いたAU検出のための新しい自己教師型フレームワークを提案する。
改良された最適輸送(OT)アルゴリズムを導入し,AU間の相関特性を利用した。
Swin Transformerは、機能学習中に各AU領域内の長距離依存関係をモデル化するために利用される。
論文 参考訳(メタデータ) (2023-03-10T05:22:45Z) - Improved Speech Emotion Recognition using Transfer Learning and
Spectrogram Augmentation [56.264157127549446]
音声感情認識(SER)は、人間とコンピュータの相互作用において重要な役割を果たす課題である。
SERの主な課題の1つは、データの不足である。
本稿では,スペクトログラム拡張と併用した移動学習戦略を提案する。
論文 参考訳(メタデータ) (2021-08-05T10:39:39Z) - Combining Feature and Instance Attribution to Detect Artifacts [62.63504976810927]
トレーニングデータアーティファクトの識別を容易にする手法を提案する。
提案手法は,トレーニングデータのアーティファクトの発見に有効であることを示す。
我々は,これらの手法が実際にNLP研究者にとって有用かどうかを評価するために,小規模なユーザスタディを実施している。
論文 参考訳(メタデータ) (2021-07-01T09:26:13Z) - Meta Auxiliary Learning for Facial Action Unit Detection [84.22521265124806]
マルチタスク方式でAU検出と表情認識を学習することを検討する。
マルチタスクシナリオにおける負の転送のため、AU検出タスクの性能を常に向上することはできない。
トレーニングFEサンプルの適応重みをメタラーニング方式で学習し,高相関なFEサンプルを自動的に選択するメタラーニング法(MAL)を提案する。
論文 参考訳(メタデータ) (2021-05-14T02:28:40Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
観察ifoからの模倣学習において、学習エージェントは、実演者の生成した制御信号にアクセスせずに、実演行動の観察のみを用いて実演エージェントを模倣しようとする。
近年、逆模倣学習に基づく手法は、ifO問題に対する最先端のパフォーマンスをもたらすが、データ非効率でモデルなしの強化学習アルゴリズムに依存するため、サンプルの複雑さに悩まされることが多い。
この問題は、サンプルの収集が時間、エネルギー、およびリスクの面で高いコストを被る可能性がある現実世界の設定に展開することは非現実的です。
よりデータ効率の高いifOアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-31T23:46:32Z) - Multi-Pretext Attention Network for Few-shot Learning with
Self-supervision [37.6064643502453]
補助的なサンプルに依存しない自己教師付き学習のための,新しい拡張不要な手法を提案する。
さらに,従来の拡張信頼手法とGCを組み合わせるために,特定の注意機構を利用するマルチテキスト注意ネットワーク(MAN)を提案する。
miniImageNetおよびtieredImageNetデータセット上でMANを幅広く評価し、提案手法が最新(SOTA)関連手法より優れていることを実証した。
論文 参考訳(メタデータ) (2021-03-10T10:48:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。