論文の概要: Knowledge Transfer via Pre-training for Recommendation: A Review and
Prospect
- arxiv url: http://arxiv.org/abs/2009.09226v1
- Date: Sat, 19 Sep 2020 13:06:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-16 21:37:49.381198
- Title: Knowledge Transfer via Pre-training for Recommendation: A Review and
Prospect
- Title(参考訳): 推薦のための事前学習による知識伝達:概観と展望
- Authors: Zheni Zeng, Chaojun Xiao, Yuan Yao, Ruobing Xie, Zhiyuan Liu, Fen Lin,
Leyu Lin and Maosong Sun
- Abstract要約: 実験による推薦システムに対する事前学習の利点を示す。
事前学習を伴うレコメンデータシステムの今後の研究に向けて,いくつかの将来的な方向性について論じる。
- 参考スコア(独自算出の注目度): 89.91745908462417
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recommender systems aim to provide item recommendations for users, and are
usually faced with data sparsity problem (e.g., cold start) in real-world
scenarios. Recently pre-trained models have shown their effectiveness in
knowledge transfer between domains and tasks, which can potentially alleviate
the data sparsity problem in recommender systems. In this survey, we first
provide a review of recommender systems with pre-training. In addition, we show
the benefits of pre-training to recommender systems through experiments.
Finally, we discuss several promising directions for future research for
recommender systems with pre-training.
- Abstract(参考訳): レコメンダシステムは、ユーザに対してアイテムレコメンデーションを提供することを目的としており、現実世界のシナリオでは、通常、データスパーシティの問題(コールドスタートなど)に直面します。
最近、事前学習されたモデルによって、ドメインとタスク間の知識転送の有効性が示され、レコメンダシステムにおけるデータスパーシティ問題を軽減する可能性がある。
本調査ではまず,事前学習による推薦システムのレビューを行う。
さらに,実験による推薦システムに対する事前学習の利点を示す。
最後に,事前学習を伴うレコメンデータシステムの今後の研究の方向性について述べる。
関連論文リスト
- Impression-Aware Recommender Systems [57.38537491535016]
新たなデータソースは、レコメンデーションシステムの品質を改善する新しい機会をもたらす。
研究者はインプレッションを使ってユーザーの好みを洗練させ、推奨システム研究の現在の制限を克服することができる。
本稿ではインプレッションを用いたレコメンデーションシステムに関する体系的な文献レビューを行う。
論文 参考訳(メタデータ) (2023-08-15T16:16:02Z) - Recent Developments in Recommender Systems: A Survey [34.810859384592355]
この研究は、パーソナライズされたシステムやグループレコメンデーションシステムを含む、レコメンデーションシステムの主要な分類を包括的にまとめることから始まる。
この調査は、レコメンデータシステムにおける堅牢性、データバイアス、公平性の問題を分析します。
この研究は、リコメンデータシステムの開発における最新のトレンドについての洞察を提供し、この分野における今後の研究の方向性を浮き彫りにしている。
論文 参考訳(メタデータ) (2023-06-22T05:51:49Z) - A Survey on Fairness-aware Recommender Systems [59.23208133653637]
本稿では,様々なレコメンデーションシナリオにおいてフェアネスの概念を提示し,現在の進歩を包括的に分類し,レコメンデーションシステムのさまざまな段階におけるフェアネスを促進するための典型的な手法を紹介する。
次に、フェアネスを意識したレコメンデーションシステムが実業界における産業応用に与える影響について検討する。
論文 参考訳(メタデータ) (2023-06-01T07:08:22Z) - Recommender Systems: A Primer [7.487718119544156]
本稿では,従来のレコメンデーション問題の定式化について概説する。
次に、アイテム検索とランキングのための古典的アルゴリズムパラダイムをレビューする。
本稿では,近年のレコメンデーションシステム研究の進展について論じる。
論文 参考訳(メタデータ) (2023-02-06T06:19:05Z) - FairRoad: Achieving Fairness for Recommender Systems with Optimized
Antidote Data [15.555228739298045]
我々は、最適化された解毒剤データ(FairRoad)を用いたフェアレコメンデーションと呼ばれる新しいアプローチを提案する。
提案する解毒剤データ生成アルゴリズムは,少量の解毒剤データを用いたレコメンデータシステムの公正性を著しく向上する。
論文 参考訳(メタデータ) (2022-12-13T17:32:44Z) - Breaking Feedback Loops in Recommender Systems with Causal Inference [99.22185950608838]
近年の研究では、フィードバックループが推奨品質を損なう可能性があり、ユーザの振る舞いを均質化している。
本稿では、因果推論を用いてフィードバックループを確実に破壊するアルゴリズムCAFLを提案する。
従来の補正手法と比較して,CAFLは推奨品質を向上することを示す。
論文 参考訳(メタデータ) (2022-07-04T17:58:39Z) - Membership Inference Attacks Against Recommender Systems [33.66394989281801]
我々は,会員推論のレンズを用いて,レコメンデータシステムのプライバシー漏洩を定量化するための最初の試みを行う。
私たちの攻撃はユーザレベルにありますが、データサンプルレベルではありません。
シャドーレコメンデータは、ラベル付きトレーニングデータを導出し、攻撃モデルを訓練する。
論文 参考訳(メタデータ) (2021-09-16T15:19:19Z) - Survey for Trust-aware Recommender Systems: A Deep Learning Perspective [48.2733163413522]
信頼できるレコメンデーションシステムを採用することが重要になります。
本調査では,信頼を意識したレコメンデータシステムの3つのカテゴリについて概説する。
論文 参考訳(メタデータ) (2020-04-08T02:11:55Z) - A Survey on Knowledge Graph-Based Recommender Systems [65.50486149662564]
我々は知識グラフに基づく推薦システムの体系的な調査を行う。
論文は、知識グラフを正確かつ説明可能なレコメンデーションにどのように活用するかに焦点を当てる。
これらの作業で使用されるデータセットを紹介します。
論文 参考訳(メタデータ) (2020-02-28T02:26:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。