論文の概要: Emotion Embeddings $\unicode{x2014}$ Learning Stable and Homogeneous
Abstractions from Heterogeneous Affective Datasets
- arxiv url: http://arxiv.org/abs/2308.07871v1
- Date: Tue, 15 Aug 2023 16:39:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-16 12:01:27.681577
- Title: Emotion Embeddings $\unicode{x2014}$ Learning Stable and Homogeneous
Abstractions from Heterogeneous Affective Datasets
- Title(参考訳): Emotion Embeddings $\unicode{x2014}$ Learning Stable and Homogeneous Abstractions from Heterogeneous Affective Datasets
- Authors: Sven Buechel and Udo Hahn
- Abstract要約: 感情の共有潜在表現を学習する訓練手順を提案する。
幅広い異種感情データセットの実験は、このアプローチが望ましい相互運用性をもたらすことを示している。
- 参考スコア(独自算出の注目度): 4.720033725720261
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human emotion is expressed in many communication modalities and media formats
and so their computational study is equally diversified into natural language
processing, audio signal analysis, computer vision, etc. Similarly, the large
variety of representation formats used in previous research to describe
emotions (polarity scales, basic emotion categories, dimensional approaches,
appraisal theory, etc.) have led to an ever proliferating diversity of
datasets, predictive models, and software tools for emotion analysis. Because
of these two distinct types of heterogeneity, at the expressional and
representational level, there is a dire need to unify previous work on
increasingly diverging data and label types. This article presents such a
unifying computational model. We propose a training procedure that learns a
shared latent representation for emotions, so-called emotion embeddings,
independent of different natural languages, communication modalities, media or
representation label formats, and even disparate model architectures.
Experiments on a wide range of heterogeneous affective datasets indicate that
this approach yields the desired interoperability for the sake of reusability,
interpretability and flexibility, without penalizing prediction quality. Code
and data are archived under https://doi.org/10.5281/zenodo.7405327 .
- Abstract(参考訳): 人間の感情は多くのコミュニケーションモダリティやメディアフォーマットで表現されるため、その計算研究は自然言語処理、音声信号分析、コンピュータビジョン等に等しく多様化している。
同様に、以前の研究で感情(極性尺度、基本的な感情カテゴリ、次元的アプローチ、評価理論など)を記述するのに用いられた多種多様な表現形式は、データセット、予測モデル、感情分析のためのソフトウェアツールの多様化につながった。
これら2つの異なる異種性のため、表現的および表現的レベルでは、データやラベルの型を多様化する以前の作業を統合する必要がある。
本稿ではそのような統一計算モデルを提案する。
本稿では,感情の共有潜在表現,いわゆる感情埋め込み,異なる自然言語,コミュニケーションモダリティ,メディアや表現ラベル形式,さらには異なるモデルアーキテクチャを学習するトレーニング手順を提案する。
幅広い不均一な感情データセットに関する実験は、このアプローチが予測品質を損なうことなく、再利用性、解釈性、柔軟性のために望ましい相互運用性をもたらすことを示している。
コードとデータはhttps://doi.org/10.5281/zenodo.7405327でアーカイブされる。
関連論文リスト
- Emotion Rendering for Conversational Speech Synthesis with Heterogeneous
Graph-Based Context Modeling [50.99252242917458]
会話音声合成(CSS)は,会話環境の中で適切な韻律と感情のインフレクションで発話を正確に表現することを目的としている。
データ不足の問題に対処するため、私たちはカテゴリと強度の点で感情的なラベルを慎重に作成します。
我々のモデルは感情の理解と表現においてベースラインモデルよりも優れています。
論文 参考訳(メタデータ) (2023-12-19T08:47:50Z) - Towards Generalizable SER: Soft Labeling and Data Augmentation for
Modeling Temporal Emotion Shifts in Large-Scale Multilingual Speech [3.86122440373248]
段階的な感情的強度を捉えるソフトラベルシステムを提案する。
コントラスト学習にインスパイアされたWhisperエンコーダとデータ拡張手法を用いて,感情の時間的ダイナミクスを強調する。
Hume-Prosodyを微調整した後、オープンソースモデルウェイトと最初の有望な結果を公開する。
論文 参考訳(メタデータ) (2023-11-15T00:09:21Z) - Context Unlocks Emotions: Text-based Emotion Classification Dataset
Auditing with Large Language Models [23.670143829183104]
テキストデータに文脈情報がないため、テキストベースの感情分類データセットのアノテーションプロセスは困難である。
本稿では,このような文脈情報を強化するための促進戦略を動機付けるために,テキストコンテキストの形式的定義を提案する。
提案手法は, 経験的, 人的評価的両面から, 入力と人的アノテートラベルのアライメントを改善する。
論文 参考訳(メタデータ) (2023-11-06T21:34:49Z) - Implicit Design Choices and Their Impact on Emotion Recognition Model
Development and Evaluation [5.534160116442057]
感情の主観性は、正確で堅牢な計算モデルを開発する上で大きな課題を生じさせる。
この論文は、多様なデータセットの収集から始まる感情認識の批判的な側面を調べる。
非表現的トレーニングデータの課題に対処するため、この研究はマルチモーダルストレス感情データセットを収集する。
論文 参考訳(メタデータ) (2023-09-06T02:45:42Z) - Improving the Generalizability of Text-Based Emotion Detection by
Leveraging Transformers with Psycholinguistic Features [27.799032561722893]
本稿では,両方向長短期記憶(BiLSTM)ネットワークと変換器モデル(BERT,RoBERTa)を併用したテキストベースの感情検出手法を提案する。
提案したハイブリッドモデルでは,標準的なトランスフォーマーベースアプローチと比較して,分布外データへの一般化能力の向上が期待できる。
論文 参考訳(メタデータ) (2022-12-19T13:58:48Z) - Vision+X: A Survey on Multimodal Learning in the Light of Data [64.03266872103835]
様々なソースからのデータを組み込んだマルチモーダル機械学習が,ますます普及している研究分野となっている。
我々は、視覚、音声、テキスト、動きなど、各データフォーマットの共通点と特異点を分析する。
本稿では,表現学習と下流アプリケーションレベルの両方から,マルチモーダル学習に関する既存の文献を考察する。
論文 参考訳(メタデータ) (2022-10-05T13:14:57Z) - Seeking Subjectivity in Visual Emotion Distribution Learning [93.96205258496697]
視覚感情分析(VEA)は、人々の感情を異なる視覚刺激に向けて予測することを目的としている。
既存の手法では、集団投票プロセスにおいて固有の主観性を無視して、統合されたネットワークにおける視覚的感情分布を予測することが多い。
視覚的感情分布の主観性を調べるために,新しいテキストサブジェクティビティ評価ネットワーク(SAMNet)を提案する。
論文 参考訳(メタデータ) (2022-07-25T02:20:03Z) - Multimodal Emotion Recognition using Transfer Learning from Speaker
Recognition and BERT-based models [53.31917090073727]
本稿では,音声とテキストのモダリティから,伝達学習モデルと微調整モデルとを融合したニューラルネットワークによる感情認識フレームワークを提案する。
本稿では,対話型感情的モーションキャプチャー・データセットにおけるマルチモーダル・アプローチの有効性を評価する。
論文 参考訳(メタデータ) (2022-02-16T00:23:42Z) - Enhancing Cognitive Models of Emotions with Representation Learning [58.2386408470585]
本稿では,きめ細かな感情の埋め込み表現を生成するための,新しいディープラーニングフレームワークを提案する。
本フレームワークは,コンテキスト型埋め込みエンコーダとマルチヘッド探索モデルを統合する。
本モデルは共感対話データセット上で評価され,32種類の感情を分類する最新結果を示す。
論文 参考訳(メタデータ) (2021-04-20T16:55:15Z) - Towards a Unified Framework for Emotion Analysis [12.369106010767283]
EmoCoderはモジュール式エンコーダ・デコーダアーキテクチャで、様々なタスクに対する感情分析を一般化する。
EmoCoderは、言語に依存しない感情の表現を学ぶ。
論文 参考訳(メタデータ) (2020-12-01T00:54:13Z) - Modality-Transferable Emotion Embeddings for Low-Resource Multimodal
Emotion Recognition [55.44502358463217]
本稿では、上記の問題に対処するため、感情を埋め込んだモダリティ変換可能なモデルを提案する。
我々のモデルは感情カテゴリーのほとんどで最先端のパフォーマンスを達成する。
私たちのモデルは、目に見えない感情に対するゼロショットと少数ショットのシナリオにおいて、既存のベースラインよりも優れています。
論文 参考訳(メタデータ) (2020-09-21T06:10:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。