Leveraging Codebook Knowledge with NLI and ChatGPT for Zero-Shot Political Relation Classification
- URL: http://arxiv.org/abs/2308.07876v3
- Date: Thu, 6 Jun 2024 14:46:44 GMT
- Title: Leveraging Codebook Knowledge with NLI and ChatGPT for Zero-Shot Political Relation Classification
- Authors: Yibo Hu, Erick Skorupa Parolin, Latifur Khan, Patrick T. Brandt, Javier Osorio, Vito J. D'Orazio,
- Abstract summary: This study evaluates zero-shot learning methods that use expert knowledge from existing codebook and a natural language inference (NLI)-based model called ZSP.
Experiments reveal ChatGPT's strengths and limitations, and crucially show ZSP's outperformance of dictionary-based methods.
Our study underscores the efficacy of leveraging transfer learning and existing domain expertise to enhance research efficiency and scalability.
- Score: 10.896514317144499
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Is it possible accurately classify political relations within evolving event ontologies without extensive annotations? This study investigates zero-shot learning methods that use expert knowledge from existing annotation codebook, and evaluates the performance of advanced ChatGPT (GPT-3.5/4) and a natural language inference (NLI)-based model called ZSP. ChatGPT uses codebook's labeled summaries as prompts, whereas ZSP breaks down the classification task into context, event mode, and class disambiguation to refine task-specific hypotheses. This decomposition enhances interpretability, efficiency, and adaptability to schema changes. The experiments reveal ChatGPT's strengths and limitations, and crucially show ZSP's outperformance of dictionary-based methods and its competitive edge over some supervised models. These findings affirm the value of ZSP for validating event records and advancing ontology development. Our study underscores the efficacy of leveraging transfer learning and existing domain expertise to enhance research efficiency and scalability.
Related papers
- CELA: Cost-Efficient Language Model Alignment for CTR Prediction [71.85120354973073]
Click-Through Rate (CTR) prediction holds a paramount position in recommender systems.
Recent efforts have sought to mitigate these challenges by integrating Pre-trained Language Models (PLMs)
We propose textbfCost-textbfEfficient textbfLanguage Model textbfAlignment (textbfCELA) for CTR prediction.
arXiv Detail & Related papers (2024-05-17T07:43:25Z) - SEER-ZSL: Semantic Encoder-Enhanced Representations for Generalized
Zero-Shot Learning [0.7420433640907689]
Generalized Zero-Shot Learning (GZSL) recognizes unseen classes by transferring knowledge from the seen classes.
This paper introduces a dual strategy to address the generalization gap.
arXiv Detail & Related papers (2023-12-20T15:18:51Z) - Open-Vocabulary Segmentation with Semantic-Assisted Calibration [73.39366775301382]
We study open-vocabulary segmentation (OVS) through calibrating in-vocabulary and domain-biased embedding space with contextual prior of CLIP.
We present a Semantic-assisted CAlibration Network (SCAN) to achieve state-of-the-art performance on open-vocabulary segmentation benchmarks.
arXiv Detail & Related papers (2023-12-07T07:00:09Z) - Injecting linguistic knowledge into BERT for Dialogue State Tracking [60.42231674887294]
This paper proposes a method that extracts linguistic knowledge via an unsupervised framework.
We then utilize this knowledge to augment BERT's performance and interpretability in Dialogue State Tracking (DST) tasks.
We benchmark this framework on various DST tasks and observe a notable improvement in accuracy.
arXiv Detail & Related papers (2023-11-27T08:38:42Z) - Improving Language Models Meaning Understanding and Consistency by
Learning Conceptual Roles from Dictionary [65.268245109828]
Non-human-like behaviour of contemporary pre-trained language models (PLMs) is a leading cause undermining their trustworthiness.
A striking phenomenon is the generation of inconsistent predictions, which produces contradictory results.
We propose a practical approach that alleviates the inconsistent behaviour issue by improving PLM awareness.
arXiv Detail & Related papers (2023-10-24T06:15:15Z) - Prompting classes: Exploring the Power of Prompt Class Learning in
Weakly Supervised Semantic Segmentation [15.467510304266883]
We study the impact of prompt tuning on weakly supervised semantic segmentation.
We introduce a novel approach based on a PrOmpt cLass lEarning (POLE) strategy.
We demonstrate that our simple, yet efficient approach achieves SOTA performance in a well-known WSSS benchmark.
arXiv Detail & Related papers (2023-06-30T19:25:18Z) - Navigating Prompt Complexity for Zero-Shot Classification: A Study of Large Language Models in Computational Social Science [27.727207443432278]
We evaluate the zero-shot performance of two publicly accessible Large Language Models, ChatGPT and OpenAssistant.
We find that different prompting strategies can significantly affect classification accuracy, with variations in accuracy and F1 scores exceeding 10%.
arXiv Detail & Related papers (2023-05-23T17:48:21Z) - ChatGraph: Interpretable Text Classification by Converting ChatGPT
Knowledge to Graphs [54.48467003509595]
ChatGPT has shown superior performance in various natural language processing (NLP) tasks.
We propose a novel framework that leverages the power of ChatGPT for specific tasks, such as text classification.
Our method provides a more transparent decision-making process compared with previous text classification methods.
arXiv Detail & Related papers (2023-05-03T19:57:43Z) - Active Pointly-Supervised Instance Segmentation [106.38955769817747]
We present an economic active learning setting, named active pointly-supervised instance segmentation (APIS)
APIS starts with box-level annotations and iteratively samples a point within the box and asks if it falls on the object.
The model developed with these strategies yields consistent performance gain on the challenging MS-COCO dataset.
arXiv Detail & Related papers (2022-07-23T11:25:24Z) - A Survey on Recent Advances in Sequence Labeling from Deep Learning
Models [19.753741555478793]
Sequence labeling is a fundamental research problem encompassing a variety of tasks.
Deep learning has been employed for sequence labeling tasks due to its powerful capability in automatically learning complex features.
arXiv Detail & Related papers (2020-11-13T02:29:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.