論文の概要: Teach LLMs to Personalize -- An Approach inspired by Writing Education
- arxiv url: http://arxiv.org/abs/2308.07968v1
- Date: Tue, 15 Aug 2023 18:06:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-17 15:53:05.489934
- Title: Teach LLMs to Personalize -- An Approach inspired by Writing Education
- Title(参考訳): LLMのパーソナライズ教育--執筆教育に触発されたアプローチ
- Authors: Cheng Li, Mingyang Zhang, Qiaozhu Mei, Yaqing Wang, Spurthi Amba
Hombaiah, Yi Liang, Michael Bendersky
- Abstract要約: 大規模言語モデル(LLM)を用いたパーソナライズされたテキスト生成のための汎用的アプローチを提案する。
書字教育の実践に触発されて、パーソナライズされた世代にLLMを教えるためのマルチステージ・マルチタスク・フレームワークを開発した。
- 参考スコア(独自算出の注目度): 37.198598706659524
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Personalized text generation is an emerging research area that has attracted
much attention in recent years. Most studies in this direction focus on a
particular domain by designing bespoke features or models. In this work, we
propose a general approach for personalized text generation using large
language models (LLMs). Inspired by the practice of writing education, we
develop a multistage and multitask framework to teach LLMs for personalized
generation. In writing instruction, the task of writing from sources is often
decomposed into multiple steps that involve finding, evaluating, summarizing,
synthesizing, and integrating information. Analogously, our approach to
personalized text generation consists of multiple stages: retrieval, ranking,
summarization, synthesis, and generation. In addition, we introduce a multitask
setting that helps the model improve its generation ability further, which is
inspired by the observation in education that a student's reading proficiency
and writing ability are often correlated. We evaluate our approach on three
public datasets, each of which covers a different and representative domain.
Our results show significant improvements over a variety of baselines.
- Abstract(参考訳): パーソナライズされたテキスト生成は、近年注目を集めている新たな研究分野である。
この方向のほとんどの研究は、好ましくない特徴やモデルを設計することによって特定の領域に焦点を当てている。
本研究では,大規模言語モデル(LLM)を用いたパーソナライズされたテキスト生成手法を提案する。
教育実践に触発されて,多段階多タスクフレームワークを開発し,個人化世代にllmを教える。
インストラクションを書く際に、ソースから書くタスクは、情報の発見、評価、要約、合成、統合を含む複数のステップに分解されることが多い。
同様に、パーソナライズされたテキスト生成へのアプローチは、検索、ランキング、要約、合成、生成という複数の段階からなる。
さらに,学生の読解能力と書字能力が相関することが多い教育における観察から着想を得たマルチタスク・セッティングを導入する。
我々は3つのパブリックデータセットに対するアプローチを評価し、それぞれが異なる代表領域をカバーする。
以上の結果から, 各種のベースラインに対して有意な改善が得られた。
関連論文リスト
- Beyond Profile: From Surface-Level Facts to Deep Persona Simulation in LLMs [50.0874045899661]
本稿では,キャラクタの言語パターンと特徴的思考過程の両方を再現するモデルであるキャラクタボットを紹介する。
ケーススタディとしてLu Xunを用いて、17冊のエッセイコレクションから得られた4つのトレーニングタスクを提案する。
これには、外部の言語構造と知識を習得することに焦点を当てた事前訓練タスクと、3つの微調整タスクが含まれる。
言語的正確性と意見理解の3つのタスクにおいて、キャラクタボットを評価し、適応されたメトリクスのベースラインを著しく上回ることを示す。
論文 参考訳(メタデータ) (2025-02-18T16:11:54Z) - Inclusivity in Large Language Models: Personality Traits and Gender Bias in Scientific Abstracts [49.97673761305336]
我々は,3つの大きな言語モデル (LLM) を,人間の物語スタイルと潜在的な性別バイアスに適合させることで評価した。
以上の結果から,これらのモデルは一般的にヒトの投稿内容によく似たテキストを生成するが,スタイル的特徴の変化は有意な性差を示すことが示唆された。
論文 参考訳(メタデータ) (2024-06-27T19:26:11Z) - Navigating the Path of Writing: Outline-guided Text Generation with Large Language Models [8.920436030483872]
本稿では,Large Language Models (LLMs) をユーザ整列テキスト生成のガイドとして,明示的なアウトラインを用いたLinging Pathを提案する。
我々のアプローチは、構造化された記述計画と推論パスからインスピレーションを得て、書き込みプロセス全体を通してユーザの意図を捉え、反映することに重点を置いています。
論文 参考訳(メタデータ) (2024-04-22T06:57:43Z) - Personalized Text Generation with Fine-Grained Linguistic Control [9.668216418094316]
複数の言語的次元にまたがる微粒な属性の制御に焦点をあてる。
生成モデルを訓練するための新しいベンチマークを導入し、パーソナライズされたテキストを生成する能力を評価する。
論文 参考訳(メタデータ) (2024-02-07T14:41:08Z) - MOCHA: A Multi-Task Training Approach for Coherent Text Generation from
Cognitive Perspective [22.69509556890676]
本稿では,文章の認知理論に基づくコヒーレントテキスト生成のための新しいマルチタスク学習戦略を提案する。
我々は,物語生成,ニュース記事作成,議論生成という3つのオープンエンド世代タスクに対して,我々のモデルを広範囲に評価する。
論文 参考訳(メタデータ) (2022-10-26T11:55:41Z) - Unsupervised Neural Stylistic Text Generation using Transfer learning
and Adapters [66.17039929803933]
応答生成のためのスタイル特化属性を学習するために,モデルパラメータの0.3%しか更新しない新しい転送学習フレームワークを提案する。
我々はPERSONALITY-CAPTIONSデータセットからスタイル固有の属性を学習する。
論文 参考訳(メタデータ) (2022-10-07T00:09:22Z) - Pretrained Language Models for Text Generation: A Survey [46.03096493973206]
本稿では、テキスト生成のための事前学習言語モデル(PLM)のトピックにおいて達成された大きな進歩について概説する。
我々は、既存のPLMを異なる入力データに適応させ、生成したテキストの特別な特性を満たす方法について論じる。
論文 参考訳(メタデータ) (2021-05-21T12:27:44Z) - Positioning yourself in the maze of Neural Text Generation: A
Task-Agnostic Survey [54.34370423151014]
本稿では, ストーリーテリング, 要約, 翻訳など, 世代ごとのタスクインパクトをリレーする手法の構成要素について検討する。
本稿では,学習パラダイム,事前学習,モデリングアプローチ,復号化,各分野における重要な課題について,命令的手法の抽象化を提案する。
論文 参考訳(メタデータ) (2020-10-14T17:54:42Z) - Pre-training via Paraphrasing [96.79972492585112]
教師なし多言語パラフレージング目的を用いて学習した,事前学習されたシーケンス・ツー・シーケンスモデルであるMARGEを紹介する。
ランダムな初期化のみを前提として,検索と再構築を共同で行うことができることを示す。
例えば、追加のタスク固有のトレーニングがなければ、文書翻訳のBLEUスコアは最大35.8に達する。
論文 参考訳(メタデータ) (2020-06-26T14:43:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。