論文の概要: Beyond Profile: From Surface-Level Facts to Deep Persona Simulation in LLMs
- arxiv url: http://arxiv.org/abs/2502.12988v1
- Date: Tue, 18 Feb 2025 16:11:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:02:38.931401
- Title: Beyond Profile: From Surface-Level Facts to Deep Persona Simulation in LLMs
- Title(参考訳): 表面レベルからLLMのディープ・ペルソナ・シミュレーションまで
- Authors: Zixiao Wang, Duzhen Zhang, Ishita Agrawal, Shen Gao, Le Song, Xiuying Chen,
- Abstract要約: 本稿では,キャラクタの言語パターンと特徴的思考過程の両方を再現するモデルであるキャラクタボットを紹介する。
ケーススタディとしてLu Xunを用いて、17冊のエッセイコレクションから得られた4つのトレーニングタスクを提案する。
これには、外部の言語構造と知識を習得することに焦点を当てた事前訓練タスクと、3つの微調整タスクが含まれる。
言語的正確性と意見理解の3つのタスクにおいて、キャラクタボットを評価し、適応されたメトリクスのベースラインを著しく上回ることを示す。
- 参考スコア(独自算出の注目度): 50.0874045899661
- License:
- Abstract: Previous approaches to persona simulation large language models (LLMs) have typically relied on learning basic biographical information, or using limited role-play dialogue datasets to capture a character's responses. However, a holistic representation of an individual goes beyond surface-level facts or conversations to deeper thoughts and thinking. In this work, we introduce CharacterBot, a model designed to replicate both the linguistic patterns and distinctive thought processes of a character. Using Lu Xun, a renowned Chinese writer, as a case study, we propose four training tasks derived from his 17 essay collections. These include a pre-training task focused on mastering external linguistic structures and knowledge, as well as three fine-tuning tasks: multiple-choice question answering, generative question answering, and style transfer, each aligning the LLM with Lu Xun's internal ideation and writing style. To optimize learning across these tasks, we introduce a CharLoRA parameter updating mechanism, where a general linguistic style expert collaborates with other task-specific experts to better study both the language style and the understanding of deeper thoughts. We evaluate CharacterBot on three tasks for linguistic accuracy and opinion comprehension, demonstrating that it significantly outperforms the baselines on our adapted metrics. We hope that this work inspires future research on deep character persona simulation LLM.
- Abstract(参考訳): ペルソナシミュレーション大言語モデル(LLM)に対する従来のアプローチは、通常、基本的な伝記情報を学習したり、限られたロールプレイの対話データセットを使って文字の反応を捉えることに依存してきた。
しかし、個人の全体論的な表現は、表面的な事実や会話を超えて、より深い思考や思考へと至る。
本研究では,キャラクタの言語パターンと特徴的思考過程の両方を再現するモデルであるキャラクタボットを紹介する。
著名な中国の作家ル・ジュンを事例研究として、17冊のエッセイ集から派生した4つの訓練課題を提案する。
これには、外部の言語構造と知識を習得することに焦点を当てた事前訓練タスクと、3つの微調整タスクが含まれる: 複数選択の質問応答、生成的な質問応答、スタイル転送。
そこでは、一般的な言語スタイルの専門家が、他のタスク固有の専門家と協力して、言語スタイルと深い思考の理解の両方をよりよく研究する、CharLoRAパラメータ更新機構を導入する。
言語的正確性と意見理解の3つのタスクにおいて、キャラクタボットを評価し、適応されたメトリクスのベースラインを著しく上回ることを示す。
我々はこの研究がディープ・キャラクタ・ペルソナ・シミュレーション LLM の今後の研究を刺激することを期待している。
関連論文リスト
- Using Prompts to Guide Large Language Models in Imitating a Real Person's Language Style [8.653992214883726]
本研究では,同じゼロショットプロンプトの指導の下で,3つの異なる大言語モデルの言語スタイルの模倣能力を比較する。
また、3つの異なるプロンプトによって個別にガイドされる場合、同じ大きな言語モデルの模倣能力を比較する。
Llama 3にTree-of-Thoughts (ToT) Promptingメソッドを適用することで、実際の人の言語スタイルを持つ会話型AIが作られた。
論文 参考訳(メタデータ) (2024-10-04T18:30:34Z) - Inclusivity in Large Language Models: Personality Traits and Gender Bias in Scientific Abstracts [49.97673761305336]
我々は,3つの大きな言語モデル (LLM) を,人間の物語スタイルと潜在的な性別バイアスに適合させることで評価した。
以上の結果から,これらのモデルは一般的にヒトの投稿内容によく似たテキストを生成するが,スタイル的特徴の変化は有意な性差を示すことが示唆された。
論文 参考訳(メタデータ) (2024-06-27T19:26:11Z) - Character is Destiny: Can Role-Playing Language Agents Make Persona-Driven Decisions? [59.0123596591807]
我々は、ペルソナ駆動意思決定におけるLarge Language Models(LLM)の能力をベンチマークする。
高品質な小説において, LLM が先行する物語のキャラクターの判断を予測できるかどうかを検討する。
その結果、現状のLLMは、このタスクに有望な能力を示すが、改善の余地は残されている。
論文 参考訳(メタデータ) (2024-04-18T12:40:59Z) - Reasoning in Conversation: Solving Subjective Tasks through Dialogue
Simulation for Large Language Models [56.93074140619464]
本稿では,対話シミュレーションによる主観的課題の解決に焦点を当てたRiC(Reasoning in Conversation)を提案する。
RiCのモチベーションは、チェーン・オブ・ソート・スタイルの合理性を提供するのではなく、対話をシミュレートすることで有用な文脈情報をマイニングすることである。
GPT-4、ChatGPT、OpenChatなど、APIベースのLLMとオープンソースのLLMの両方を12のタスクで評価する。
論文 参考訳(メタデータ) (2024-02-27T05:37:10Z) - Multi-level Contrastive Learning for Script-based Character
Understanding [14.341307979533871]
文字の個人性やアイデンティティを発話から学習することを目的としたスクリプトにおける文字理解のシナリオに取り組む。
キャラクタのグローバル情報をきめ細かな方法でキャプチャするマルチレベルコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-20T02:40:52Z) - Character-LLM: A Trainable Agent for Role-Playing [67.35139167985008]
大規模言語モデル(LLM)は、人間の振る舞いをシミュレートするエージェントとして用いられる。
本稿では, ベートーヴェン, クレオパトラ女王, ユリウス・カエサルなど, LLM に特定の人物として行動するように教えるキャラクタ-LLMを紹介する。
論文 参考訳(メタデータ) (2023-10-16T07:58:56Z) - PerPLM: Personalized Fine-tuning of Pretrained Language Models via
Writer-specific Intermediate Learning and Prompts [16.59511985633798]
事前訓練言語モデル(PLM)はコンテキストをキャプチャするための強力なツールである。
PLMは通常、様々な作家の間で広く使われるように訓練され、微調整されている。
本研究では, PLMの微調整を具体化することで, テキスト理解タスクの精度を向上させることを目的とする。
論文 参考訳(メタデータ) (2023-09-14T14:03:48Z) - Cue-CoT: Chain-of-thought Prompting for Responding to In-depth Dialogue
Questions with LLMs [59.74002011562726]
我々は、よりパーソナライズされ魅力的な応答を提供するために、新しい言語的キューに基づく思考の連鎖(textitCue-CoT)を提案する。
中国語と英語の6つのデータセットからなる詳細な対話質問を用いたベンチマークを構築した。
実験により,提案手法は,すべてのデータセットにおいて,テクステルパーフルネスとテクスチタアクセプタビリティの両方の観点から,標準的プロンプト法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-05-19T16:27:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。