論文の概要: End-to-End Open Vocabulary Keyword Search With Multilingual Neural
Representations
- arxiv url: http://arxiv.org/abs/2308.08027v1
- Date: Tue, 15 Aug 2023 20:33:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-17 15:44:44.866782
- Title: End-to-End Open Vocabulary Keyword Search With Multilingual Neural
Representations
- Title(参考訳): 多言語ニューラル表現を用いたエンドツーエンドオープン語彙検索
- Authors: Bolaji Yusuf, Jan Cernocky, Murat Saraclar
- Abstract要約: 競合性能を実現するニューラルネットワークによるASRフリーキーワード検索モデルを提案する。
本研究は,多言語事前学習と詳細なモデル解析により拡張する。
実験の結果,提案した多言語学習はモデルの性能を大幅に向上させることがわかった。
- 参考スコア(独自算出の注目度): 7.780766187171571
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conventional keyword search systems operate on automatic speech recognition
(ASR) outputs, which causes them to have a complex indexing and search
pipeline. This has led to interest in ASR-free approaches to simplify the
search procedure. We recently proposed a neural ASR-free keyword search model
which achieves competitive performance while maintaining an efficient and
simplified pipeline, where queries and documents are encoded with a pair of
recurrent neural network encoders and the encodings are combined with a
dot-product. In this article, we extend this work with multilingual pretraining
and detailed analysis of the model. Our experiments show that the proposed
multilingual training significantly improves the model performance and that
despite not matching a strong ASR-based conventional keyword search system for
short queries and queries comprising in-vocabulary words, the proposed model
outperforms the ASR-based system for long queries and queries that do not
appear in the training data.
- Abstract(参考訳): 従来のキーワード検索システムは自動音声認識(ASR)出力で動作し、複雑なインデックス付けと検索パイプラインを持つ。
これにより、検索手順を簡素化するASRフリーアプローチへの関心が高まった。
我々は最近,クエリとドキュメントを2つの繰り返しニューラルネットワークエンコーダでエンコードし,そのエンコーディングをドット積と組み合わせた,効率的かつ簡易なパイプラインを維持しながら,競争性能を実現するニューラルネットワークASRフリーキーワード検索モデルを提案した。
本稿では,本研究を多言語事前学習と詳細なモデル解析により拡張する。
本実験では,多言語学習がモデル性能を大幅に向上し,語彙内単語を含む短いクエリやクエリに対して,強いasrベースの従来型キーワード検索システムと一致しないにも関わらず,学習データに現れない長文クエリやクエリのasrベースシステムを上回ることを示す。
関連論文リスト
- CodeXEmbed: A Generalist Embedding Model Family for Multiligual and Multi-task Code Retrieval [103.116634967815]
CodeXEmbedは400Mから7Bパラメータの大規模なコード埋め込みモデルのファミリーである。
我々の新しいトレーニングパイプラインは、複数のプログラミング言語を統合し、様々なコード関連タスクを共通の検索フレームワークに変換する。
私たちの7Bモデルは、コード検索において新しい最先端(SOTA)を設定し、以前の主要なモデルであるVoyage-CodeをCoIRベンチマークで20%以上上回っています。
論文 参考訳(メタデータ) (2024-11-19T16:54:45Z) - Retrieval with Learned Similarities [2.729516456192901]
最先端の検索アルゴリズムは、学習された類似点に移行した。
そこで本研究では,Mixture-of-Logits (MoL) を実証的に実現し,多様な検索シナリオにおいて優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2024-07-22T08:19:34Z) - Improving Retrieval in Sponsored Search by Leveraging Query Context Signals [6.152499434499752]
本稿では,クエリをリッチなコンテキスト信号で拡張することで,クエリ理解を強化する手法を提案する。
我々は、Web検索のタイトルとスニペットを使って、現実世界の情報にクエリを接地し、GPT-4を使ってクエリの書き直しと説明を生成する。
我々の文脈認識アプローチは文脈自由モデルよりも大幅に優れている。
論文 参考訳(メタデータ) (2024-07-19T14:28:53Z) - ACE: A Generative Cross-Modal Retrieval Framework with Coarse-To-Fine Semantic Modeling [53.97609687516371]
我々は、エンドツーエンドのクロスモーダル検索のための先駆的なジェネリッククロスモーダル rEtrieval framework (ACE) を提案する。
ACEは、クロスモーダル検索における最先端のパフォーマンスを達成し、Recall@1の強いベースラインを平均15.27%上回る。
論文 参考訳(メタデータ) (2024-06-25T12:47:04Z) - Large Search Model: Redefining Search Stack in the Era of LLMs [63.503320030117145]
我々は,1つの大言語モデル(LLM)で検索タスクを統一することにより,従来の検索スタックを再定義する,大規模検索モデルと呼ばれる新しい概念的フレームワークを導入する。
全てのタスクは自動回帰テキスト生成問題として定式化され、自然言語のプロンプトを使ってタスクをカスタマイズできる。
提案フレームワークは,LLMの強力な言語理解と推論能力を活用し,既存の検索スタックを簡素化しつつ,検索結果の質を向上させる能力を提供する。
論文 参考訳(メタデータ) (2023-10-23T05:52:09Z) - Improved Contextual Recognition In Automatic Speech Recognition Systems
By Semantic Lattice Rescoring [4.819085609772069]
本稿では,意味的格子処理によるASRシステム内における文脈認識の高度化のための新しい手法を提案する。
提案手法は,隠れマルコフモデルとガウス混合モデル(HMM-GMM)とディープニューラルネットワーク(DNN)モデルを用いて,精度を向上する。
本稿では,実験分析によるLibriSpeechデータセット上でのフレームワークの有効性を示す。
論文 参考訳(メタデータ) (2023-10-14T23:16:05Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteRにより、RMはLLM生成した知識コレクションを使用してクエリの知識を拡張することができる。
InteRは、最先端手法と比較して総合的に優れたゼロショット検索性能を実現する。
論文 参考訳(メタデータ) (2023-05-12T11:58:15Z) - KRLS: Improving End-to-End Response Generation in Task Oriented Dialog
with Reinforced Keywords Learning [25.421649004269373]
タスク指向ダイアログ(TOD)では、強化学習アルゴリズムがタスク関連メトリクスの応答を直接最適化するためにモデルを訓練する。
オフライン環境でのTOD性能を改善するために,より効率的なRLベースのアルゴリズムを提案する。
MultiWoZデータセットの実験では、我々の新しいトレーニングアルゴリズムであるKeywords Reinforcement Learning with Next-word Smpling (KRLS)が最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2022-11-30T06:27:46Z) - CorpusBrain: Pre-train a Generative Retrieval Model for
Knowledge-Intensive Language Tasks [62.22920673080208]
単一ステップ生成モデルは、検索プロセスを劇的に単純化し、エンドツーエンドで最適化することができる。
我々は、事前学習された生成検索モデルをCorpsBrainと名付け、コーパスに関する全ての情報が、追加のインデックスを構築することなく、そのパラメータにエンコードされる。
論文 参考訳(メタデータ) (2022-08-16T10:22:49Z) - Autoregressive Search Engines: Generating Substrings as Document
Identifiers [53.0729058170278]
自動回帰言語モデルは、回答を生成するデファクト標準として現れています。
これまでの研究は、探索空間を階層構造に分割する方法を探究してきた。
本研究では,検索空間の任意の構造を強制しない代替として,経路内のすべてのngramを識別子として使用することを提案する。
論文 参考訳(メタデータ) (2022-04-22T10:45:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。