Using Artificial Populations to Study Psychological Phenomena in Neural
Models
- URL: http://arxiv.org/abs/2308.08032v1
- Date: Tue, 15 Aug 2023 20:47:51 GMT
- Title: Using Artificial Populations to Study Psychological Phenomena in Neural
Models
- Authors: Jesse Roberts, Kyle Moore, Drew Wilenzick, Doug Fisher
- Abstract summary: Investigation of cognitive behavior in language models must be conducted in an appropriate population for the results to be meaningful.
We leverage work in uncertainty estimation in a novel approach to efficiently construct experimental populations.
We provide theoretical grounding in the uncertainty estimation literature and motivation from current cognitive work regarding language models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The recent proliferation of research into transformer based natural language
processing has led to a number of studies which attempt to detect the presence
of human-like cognitive behavior in the models. We contend that, as is true of
human psychology, the investigation of cognitive behavior in language models
must be conducted in an appropriate population of an appropriate size for the
results to be meaningful. We leverage work in uncertainty estimation in a novel
approach to efficiently construct experimental populations. The resultant tool,
PopulationLM, has been made open source. We provide theoretical grounding in
the uncertainty estimation literature and motivation from current cognitive
work regarding language models. We discuss the methodological lessons from
other scientific communities and attempt to demonstrate their application to
two artificial population studies. Through population based experimentation we
find that language models exhibit behavior consistent with typicality effects
among categories highly represented in training. However, we find that language
models don't tend to exhibit structural priming effects. Generally, our results
show that single models tend to over estimate the presence of cognitive
behaviors in neural models.
Related papers
- Navigating Brain Language Representations: A Comparative Analysis of Neural Language Models and Psychologically Plausible Models [29.50162863143141]
We compare encoding performance of various neural language models and psychologically plausible models.
Surprisingly, our findings revealed that psychologically plausible models outperformed neural language models across diverse contexts.
arXiv Detail & Related papers (2024-04-30T08:48:07Z) - Computational Models to Study Language Processing in the Human Brain: A Survey [47.81066391664416]
This paper reviews efforts in using computational models for brain research, highlighting emerging trends.
Our analysis reveals that no single model outperforms others on all datasets.
arXiv Detail & Related papers (2024-03-20T08:01:22Z) - Representation Surgery: Theory and Practice of Affine Steering [72.61363182652853]
Language models often exhibit undesirable behavior, e.g., generating toxic or gender-biased text.
One natural (and common) approach to prevent the model from exhibiting undesirable behavior is to steer the model's representations.
This paper investigates the formal and empirical properties of steering functions.
arXiv Detail & Related papers (2024-02-15T00:20:30Z) - Questioning the Survey Responses of Large Language Models [18.61486375469644]
We critically examine language models' survey responses on the basis of the well-established American Community Survey by the U.S. Census Bureau.
We find that models' responses are governed by ordering and labeling biases, leading to variations across models that do not persist after adjusting for systematic biases.
Our findings suggest caution in treating models' survey responses as equivalent to those of human populations.
arXiv Detail & Related papers (2023-06-13T17:48:27Z) - Turning large language models into cognitive models [0.0]
We show that large language models can be turned into cognitive models.
These models offer accurate representations of human behavior, even outperforming traditional cognitive models in two decision-making domains.
Taken together, these results suggest that large, pre-trained models can be adapted to become generalist cognitive models.
arXiv Detail & Related papers (2023-06-06T18:00:01Z) - What Artificial Neural Networks Can Tell Us About Human Language
Acquisition [47.761188531404066]
Rapid progress in machine learning for natural language processing has the potential to transform debates about how humans learn language.
To increase the relevance of learnability results from computational models, we need to train model learners without significant advantages over humans.
arXiv Detail & Related papers (2022-08-17T00:12:37Z) - Neural Language Models are not Born Equal to Fit Brain Data, but
Training Helps [75.84770193489639]
We examine the impact of test loss, training corpus and model architecture on the prediction of functional Magnetic Resonance Imaging timecourses of participants listening to an audiobook.
We find that untrained versions of each model already explain significant amount of signal in the brain by capturing similarity in brain responses across identical words.
We suggest good practices for future studies aiming at explaining the human language system using neural language models.
arXiv Detail & Related papers (2022-07-07T15:37:17Z) - Naturalistic Causal Probing for Morpho-Syntax [76.83735391276547]
We suggest a naturalistic strategy for input-level intervention on real world data in Spanish.
Using our approach, we isolate morpho-syntactic features from counfounders in sentences.
We apply this methodology to analyze causal effects of gender and number on contextualized representations extracted from pre-trained models.
arXiv Detail & Related papers (2022-05-14T11:47:58Z) - Schr\"odinger's Tree -- On Syntax and Neural Language Models [10.296219074343785]
Language models have emerged as NLP's workhorse, displaying increasingly fluent generation capabilities.
We observe a lack of clarity across numerous dimensions, which influences the hypotheses that researchers form.
We outline the implications of the different types of research questions exhibited in studies on syntax.
arXiv Detail & Related papers (2021-10-17T18:25:23Z) - Mechanisms for Handling Nested Dependencies in Neural-Network Language
Models and Humans [75.15855405318855]
We studied whether a modern artificial neural network trained with "deep learning" methods mimics a central aspect of human sentence processing.
Although the network was solely trained to predict the next word in a large corpus, analysis showed the emergence of specialized units that successfully handled local and long-distance syntactic agreement.
We tested the model's predictions in a behavioral experiment where humans detected violations in number agreement in sentences with systematic variations in the singular/plural status of multiple nouns.
arXiv Detail & Related papers (2020-06-19T12:00:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.