Computational Models to Study Language Processing in the Human Brain: A Survey
- URL: http://arxiv.org/abs/2403.13368v1
- Date: Wed, 20 Mar 2024 08:01:22 GMT
- Title: Computational Models to Study Language Processing in the Human Brain: A Survey
- Authors: Shaonan Wang, Jingyuan Sun, Yunhao Zhang, Nan Lin, Marie-Francine Moens, Chengqing Zong,
- Abstract summary: This paper reviews efforts in using computational models for brain research, highlighting emerging trends.
Our analysis reveals that no single model outperforms others on all datasets.
- Score: 47.81066391664416
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite differing from the human language processing mechanism in implementation and algorithms, current language models demonstrate remarkable human-like or surpassing language capabilities. Should computational language models be employed in studying the brain, and if so, when and how? To delve into this topic, this paper reviews efforts in using computational models for brain research, highlighting emerging trends. To ensure a fair comparison, the paper evaluates various computational models using consistent metrics on the same dataset. Our analysis reveals that no single model outperforms others on all datasets, underscoring the need for rich testing datasets and rigid experimental control to draw robust conclusions in studies involving computational models.
Related papers
- Reverse-Engineering the Reader [43.26660964074272]
We introduce a novel alignment technique in which we fine-tune a language model to implicitly optimize the parameters of a linear regressor.
Using words as a test case, we evaluate our technique across multiple model sizes and datasets.
We find an inverse relationship between psychometric power and a model's performance on downstream NLP tasks as well as its perplexity on held-out test data.
arXiv Detail & Related papers (2024-10-16T23:05:01Z) - Brain-Like Language Processing via a Shallow Untrained Multihead Attention Network [16.317199232071232]
Large Language Models (LLMs) have been shown to be effective models of the human language system.
In this work, we investigate the key architectural components driving the surprising alignment of untrained models.
arXiv Detail & Related papers (2024-06-21T12:54:03Z) - DevBench: A multimodal developmental benchmark for language learning [0.34129029452670606]
We introduce DevBench, a benchmark for evaluating vision-language models on tasks and behavioral data.
We show that DevBench provides a benchmark for comparing models to human language development.
These comparisons highlight ways in which model and human language learning processes diverge.
arXiv Detail & Related papers (2024-06-14T17:49:41Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
We introduce an experimental protocol that enables model comparisons based on equivalent compute, measured in accelerator hours.
We pre-process an existing large, diverse, and high-quality dataset of books that surpasses existing academic benchmarks in quality, diversity, and document length.
This work also provides two baseline models: a feed-forward model derived from the GPT-2 architecture and a recurrent model in the form of a novel LSTM with ten-fold throughput.
arXiv Detail & Related papers (2023-09-20T10:31:17Z) - Arithmetic with Language Models: from Memorization to Computation [3.077668143048211]
This work investigates how a language model, trained to predict the next token, can perform arithmetic computations generalizing beyond training data.
We successfully trained a light language model to learn these tasks and ran a number of experiments to investigate the extrapolation capabilities and internal information processing.
arXiv Detail & Related papers (2023-08-02T13:58:37Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
Self-supervision based on the information extracted from large knowledge graphs has been shown to improve the generalization of language models.
We study the effect of knowledge sampling strategies and sizes that can be used to generate synthetic data for adapting language models.
arXiv Detail & Related papers (2022-05-21T19:49:04Z) - Scaling Language Models: Methods, Analysis & Insights from Training
Gopher [83.98181046650664]
We present an analysis of Transformer-based language model performance across a wide range of model scales.
Gains from scale are largest in areas such as reading comprehension, fact-checking, and the identification of toxic language.
We discuss the application of language models to AI safety and the mitigation of downstream harms.
arXiv Detail & Related papers (2021-12-08T19:41:47Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
In modern data science, it is more interesting to understand the properties of the model, which parts could be replaced to obtain better results.
We use multi-objective evolutionary optimization for composite data-driven model learning to obtain the algorithm's desired properties.
arXiv Detail & Related papers (2021-07-07T11:17:09Z) - Comparative Study of Language Models on Cross-Domain Data with Model
Agnostic Explainability [0.0]
The study compares the state-of-the-art language models - BERT, ELECTRA and its derivatives which include RoBERTa, ALBERT and DistilBERT.
The experimental results establish new state-of-the-art for 2013 rating classification task and Financial Phrasebank sentiment detection task with 69% accuracy and 88.2% accuracy respectively.
arXiv Detail & Related papers (2020-09-09T04:31:44Z) - Data Augmentation for Spoken Language Understanding via Pretrained
Language Models [113.56329266325902]
Training of spoken language understanding (SLU) models often faces the problem of data scarcity.
We put forward a data augmentation method using pretrained language models to boost the variability and accuracy of generated utterances.
arXiv Detail & Related papers (2020-04-29T04:07:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.