Exploring the Potential of Qutrits for Quantum Optimization of Graph
Coloring
- URL: http://arxiv.org/abs/2308.08050v1
- Date: Tue, 15 Aug 2023 21:31:37 GMT
- Title: Exploring the Potential of Qutrits for Quantum Optimization of Graph
Coloring
- Authors: Gabriel Bottrill, Mudit Pandey, Olivia Di Matteo
- Abstract summary: Qutrits may be useful in solving some problems on near-term devices.
We run noiseless simulations using PennyLane to compare the formulation against qubit-based QAOA.
This work suggests that qutrits may be useful in solving some problems on near-term devices, however further work is required to assess their potential in a noisy environment.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent hardware demonstrations and advances in circuit compilation have made
quantum computing with higher-dimensional systems (qudits) on near-term devices
an attractive possibility. Some problems have more natural or optimal encodings
using qudits over qubits. We explore this potential by formulating graph
3-coloring, a well-known and difficult problem with practical applications,
using qutrits, and solve it using the quantum approximate optimization
algorithm (QAOA). Qutrit-based cost and mixer Hamiltonians are constructed
along with appropriate quantum circuits using qutrit gates. We run noiseless
simulations using PennyLane to compare the formulation against qubit-based
QAOA, and analyze the solution quality and resources required. Preliminary
results show that the qutrit encoding finds more accurate solutions with a
comparable set of hyperparameters, uses half as many qudits, and has a notably
smaller circuit depth per layer than an efficient qubit encoding. This work
suggests that qutrits may be useful in solving some problems on near-term
devices, however further work is required to assess their potential in a noisy
environment.
Related papers
- Scaling Up the Quantum Divide and Conquer Algorithm for Combinatorial Optimization [0.8121127831316319]
We propose a method for constructing quantum circuits which greatly reduces inter-device communication costs.
We show that we can construct tractable circuits nearly three times the size of previous QDCA methods while retaining a similar or greater level of quality.
arXiv Detail & Related papers (2024-05-01T20:49:50Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Performance analysis of a filtering variational quantum algorithm [0.0]
Filtering Variational Quantum Eigensolver (F-VQE) is a variational hybrid quantum algorithm designed to solve optimization problems on existing quantum computers.
We employ Instantaneous Quantum Polynomial circuits as our parameterized quantum circuits.
Despite some observed positive signs, we conclude that significant development is necessary for a practical advantage with F-VQE.
arXiv Detail & Related papers (2024-04-13T08:50:44Z) - Probabilistic Sampling of Balanced K-Means using Adiabatic Quantum Computing [93.83016310295804]
AQCs allow to implement problems of research interest, which has sparked the development of quantum representations for computer vision tasks.
In this work, we explore the potential of using this information for probabilistic balanced k-means clustering.
Instead of discarding non-optimal solutions, we propose to use them to compute calibrated posterior probabilities with little additional compute cost.
This allows us to identify ambiguous solutions and data points, which we demonstrate on a D-Wave AQC on synthetic tasks and real visual data.
arXiv Detail & Related papers (2023-10-18T17:59:45Z) - Resource frugal optimizer for quantum machine learning [0.7046417074932257]
Quantum-enhanced data science, also known as quantum machine learning (QML), is of growing interest as an application of near-term quantum computers.
Variational QML algorithms have the potential to solve practical problems on real hardware, particularly when involving quantum data.
We advocate for simultaneous random sampling over both the datasets as well as the measurement operators that define the loss function.
arXiv Detail & Related papers (2022-11-09T15:29:03Z) - Quantum approximate optimization algorithm for qudit systems [0.0]
We discuss the quantum approximate optimization algorithm (QAOA) for qudit systems.
We illustrate how the QAOA can be used to formulate a variety of integer optimization problems.
We present numerical results for a charging optimization problem mapped onto a max-$k$-graph coloring problem.
arXiv Detail & Related papers (2022-04-01T10:37:57Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
We quantify scaling of the expected resource requirements by optimized circuits for hardware architectures with varying levels of connectivity.
We show the number of measurements, and hence total time to synthesizing solution, grows exponentially in problem size and problem graph degree.
These problems may be alleviated by increasing hardware connectivity or by recently proposed modifications to the QAOA that achieve higher performance with fewer circuit layers.
arXiv Detail & Related papers (2022-01-06T21:02:30Z) - Efficient Classical Computation of Quantum Mean Values for Shallow QAOA
Circuits [15.279642278652654]
We present a novel graph decomposition based classical algorithm that scales linearly with the number of qubits for the shallow QAOA circuits.
Our results are not only important for the exploration of quantum advantages with QAOA, but also useful for the benchmarking of NISQ processors.
arXiv Detail & Related papers (2021-12-21T12:41:31Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
Matching problems on 3D shapes and images are frequently formulated as quadratic assignment problems (QAPs) with permutation matrix constraints, which are NP-hard.
We propose several reformulations of QAPs as unconstrained problems suitable for efficient execution on quantum hardware.
The proposed algorithm has the potential to scale to higher dimensions on future quantum computing architectures.
arXiv Detail & Related papers (2021-07-08T17:59:55Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.