Natural Evolution Strategies as a Black Box Estimator for Stochastic
Variational Inference
- URL: http://arxiv.org/abs/2308.08053v1
- Date: Tue, 15 Aug 2023 21:43:11 GMT
- Title: Natural Evolution Strategies as a Black Box Estimator for Stochastic
Variational Inference
- Authors: Ahmad Ayaz Amin
- Abstract summary: VAE allows unbiased and low variance estimation, restricting the types of models that can be created.
An alternative gradient estimator based on natural evolution strategies is proposed.
This estimator does not make assumptions about the kind of distributions used, allowing for the creation of models that would otherwise not have been possible under the VAE framework.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Stochastic variational inference and its derivatives in the form of
variational autoencoders enjoy the ability to perform Bayesian inference on
large datasets in an efficient manner. However, performing inference with a VAE
requires a certain design choice (i.e. reparameterization trick) to allow
unbiased and low variance gradient estimation, restricting the types of models
that can be created. To overcome this challenge, an alternative estimator based
on natural evolution strategies is proposed. This estimator does not make
assumptions about the kind of distributions used, allowing for the creation of
models that would otherwise not have been possible under the VAE framework.
Related papers
- Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
Diffusion models have led to significant advancements in generative modelling.
Yet their widespread adoption poses challenges regarding data attribution and interpretability.
In this paper, we aim to help address such challenges by developing an textitinfluence functions framework.
arXiv Detail & Related papers (2024-10-17T17:59:02Z) - Variational Bayesian surrogate modelling with application to robust design optimisation [0.9626666671366836]
Surrogate models provide a quick-to-evaluate approximation to complex computational models.
We consider Bayesian inference for constructing statistical surrogates with input uncertainties and dimensionality reduction.
We demonstrate intrinsic and robust structural optimisation problems where cost functions depend on a weighted sum of the mean and standard deviation of model outputs.
arXiv Detail & Related papers (2024-04-23T09:22:35Z) - Diffusion models for probabilistic programming [56.47577824219207]
Diffusion Model Variational Inference (DMVI) is a novel method for automated approximate inference in probabilistic programming languages (PPLs)
DMVI is easy to implement, allows hassle-free inference in PPLs without the drawbacks of, e.g., variational inference using normalizing flows, and does not make any constraints on the underlying neural network model.
arXiv Detail & Related papers (2023-11-01T12:17:05Z) - Invariant Probabilistic Prediction [45.90606906307022]
We show that arbitrary distribution shifts do not, in general, admit invariant and robust probabilistic predictions.
We propose a method to yield invariant probabilistic predictions, called IPP, and study the consistency of the underlying parameters.
arXiv Detail & Related papers (2023-09-18T18:50:24Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
We propose a post-hoc sampling strategy for estimating predictive uncertainty accounting for data ambiguity.
The method can generate different plausible outputs for a given input and does not assume parametric forms of predictive distributions.
arXiv Detail & Related papers (2023-08-03T12:43:21Z) - Uncertainty estimation under model misspecification in neural network
regression [3.2622301272834524]
We study the effect of the model choice on uncertainty estimation.
We highlight that under model misspecification, aleatoric uncertainty is not properly captured.
arXiv Detail & Related papers (2021-11-23T10:18:41Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - SUMO: Unbiased Estimation of Log Marginal Probability for Latent
Variable Models [80.22609163316459]
We introduce an unbiased estimator of the log marginal likelihood and its gradients for latent variable models based on randomized truncation of infinite series.
We show that models trained using our estimator give better test-set likelihoods than a standard importance-sampling based approach for the same average computational cost.
arXiv Detail & Related papers (2020-04-01T11:49:30Z) - Decision-Making with Auto-Encoding Variational Bayes [71.44735417472043]
We show that a posterior approximation distinct from the variational distribution should be used for making decisions.
Motivated by these theoretical results, we propose learning several approximate proposals for the best model.
In addition to toy examples, we present a full-fledged case study of single-cell RNA sequencing.
arXiv Detail & Related papers (2020-02-17T19:23:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.