論文の概要: A Reinforcement Learning Approach for Performance-aware Reduction in
Power Consumption of Data Center Compute Nodes
- arxiv url: http://arxiv.org/abs/2308.08069v1
- Date: Tue, 15 Aug 2023 23:25:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-17 15:23:12.563653
- Title: A Reinforcement Learning Approach for Performance-aware Reduction in
Power Consumption of Data Center Compute Nodes
- Title(参考訳): データセンター計算ノードの消費電力削減のための強化学習手法
- Authors: Akhilesh Raj, Swann Perarnau, Aniruddha Gokhale
- Abstract要約: 我々はReinforcement Learningを使用して、クラウド計算ノード上での電力供給ポリシーを設計する。
実ハードウェア上でトレーニングされたエージェントが、消費電力とアプリケーションパフォーマンスのバランスをとることで、どのように行動を起こすかを示す。
- 参考スコア(独自算出の注目度): 0.46040036610482665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As Exascale computing becomes a reality, the energy needs of compute nodes in
cloud data centers will continue to grow. A common approach to reducing this
energy demand is to limit the power consumption of hardware components when
workloads are experiencing bottlenecks elsewhere in the system. However,
designing a resource controller capable of detecting and limiting power
consumption on-the-fly is a complex issue and can also adversely impact
application performance. In this paper, we explore the use of Reinforcement
Learning (RL) to design a power capping policy on cloud compute nodes using
observations on current power consumption and instantaneous application
performance (heartbeats). By leveraging the Argo Node Resource Management (NRM)
software stack in conjunction with the Intel Running Average Power Limit (RAPL)
hardware control mechanism, we design an agent to control the maximum supplied
power to processors without compromising on application performance. Employing
a Proximal Policy Optimization (PPO) agent to learn an optimal policy on a
mathematical model of the compute nodes, we demonstrate and evaluate using the
STREAM benchmark how a trained agent running on actual hardware can take
actions by balancing power consumption and application performance.
- Abstract(参考訳): Exascaleコンピューティングが現実になるにつれて、クラウドデータセンターにおける計算ノードのエネルギー需要は増え続けるだろう。
このエネルギー需要を減らす一般的なアプローチは、ワークロードがシステム内の他の場所でボトルネックが発生している場合に、ハードウェアコンポーネントの消費電力を制限することである。
しかし、オンザフライで消費電力を検出し制限できるリソースコントローラの設計は複雑な問題であり、アプリケーションパフォーマンスにも悪影響を及ぼす可能性がある。
本稿では,現在の電力消費と瞬時アプリケーション性能(heartbeats)の観測結果を用いて,クラウド計算ノードの電力キャッピングポリシを設計するための強化学習(rl)の利用について検討する。
本稿では,Argo Node Resource Management (NRM) ソフトウェアスタックと Intel Runing Average Power Limit (RAPL) ハードウェア制御機構を併用して,アプリケーションの性能を損なうことなくプロセッサに供給される最大電力を制御するエージェントを設計する。
本稿では,ppoエージェントを用いて計算ノード数理モデルにおける最適ポリシーを学習し,実ハードウェア上で動作する訓練エージェントが消費電力とアプリケーション性能のバランスをとることでどのように行動するかをストリームベンチマークを用いて実証し,評価する。
関連論文リスト
- WattScope: Non-intrusive Application-level Power Disaggregation in
Datacenters [0.6086160084025234]
WattScopeは、個々のアプリケーションの消費電力を非侵襲的に推定するシステムである。
WattScopeは、ビルドパワーを分離するための機械学習ベースのテクニックを適応し、拡張する。
論文 参考訳(メタデータ) (2023-09-22T04:13:46Z) - Sustainable AIGC Workload Scheduling of Geo-Distributed Data Centers: A
Multi-Agent Reinforcement Learning Approach [48.18355658448509]
生成的人工知能の最近の進歩は、機械学習トレーニングの需要が急増し、エネルギー消費の大幅な増加によるコスト負担と環境問題を引き起こしている。
地理的に分散したクラウドデータセンタ間でのトレーニングジョブのスケジューリングは、安価で低炭素エネルギーのコンピューティング能力の使用を最適化する機会を浮き彫りにする。
本研究では,実生活におけるワークロードパターン,エネルギー価格,炭素強度を組み込んだクラウドシステムと対話することで,マルチエージェント強化学習とアクタクリティカルな手法に基づく最適協調スケジューリング戦略の学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-17T02:12:30Z) - Distributed-Training-and-Execution Multi-Agent Reinforcement Learning
for Power Control in HetNet [48.96004919910818]
We propose a multi-agent Deep reinforcement learning (MADRL) based power control scheme for the HetNet。
エージェント間の協調を促進するために,MADRLシステムのためのペナルティベースQラーニング(PQL)アルゴリズムを開発した。
このように、エージェントのポリシーは、他のエージェントによってより容易に学習でき、より効率的なコラボレーションプロセスをもたらす。
論文 参考訳(メタデータ) (2022-12-15T17:01:56Z) - Precise Energy Consumption Measurements of Heterogeneous Artificial
Intelligence Workloads [0.534434568021034]
本稿では,異なるタイプの計算ノード上でのディープラーニングモデルの典型的な2つの応用のエネルギー消費の測定を行う。
我々のアプローチの1つの利点は、スーパーコンピュータの全ユーザーがエネルギー消費に関する情報を利用できることである。
論文 参考訳(メタデータ) (2022-12-03T21:40:55Z) - Distributed Energy Management and Demand Response in Smart Grids: A
Multi-Agent Deep Reinforcement Learning Framework [53.97223237572147]
本稿では、自律制御と再生可能エネルギー資源のスマート電力グリッドシステムへの統合のための多エージェント深層強化学習(DRL)フレームワークを提案する。
特に,提案フレームワークは,住宅利用者に対する需要応答 (DR) と分散エネルギー管理 (DEM) を共同で検討している。
論文 参考訳(メタデータ) (2022-11-29T01:18:58Z) - Deep Reinforcement Learning Based Multidimensional Resource Management
for Energy Harvesting Cognitive NOMA Communications [64.1076645382049]
エネルギー収穫(EH)、認知無線(CR)、非直交多重アクセス(NOMA)の組み合わせはエネルギー効率を向上させるための有望な解決策である。
本稿では,決定論的CR-NOMA IoTシステムにおけるスペクトル,エネルギー,時間資源管理について検討する。
論文 参考訳(メタデータ) (2021-09-17T08:55:48Z) - Power Modeling for Effective Datacenter Planning and Compute Management [53.41102502425513]
我々は,すべてのハードウェア構成とワークロードに適用可能な,正確でシンプルで解釈可能な統計パワーモデルの設計と検証の2つのクラスについて論じる。
提案された統計的モデリング手法は, 単純かつスケーラブルでありながら, 4つの特徴のみを用いて, 95% 以上の多様な配電ユニット (2000 以上) に対して, 5% 未満の絶対パーセンテージエラー (MAPE) で電力を予測できることを実証した。
論文 参考訳(メタデータ) (2021-03-22T21:22:51Z) - Intelligent colocation of HPC workloads [0.0]
多くのHPCアプリケーションは、共有キャッシュ、命令実行ユニット、I/O、メモリ帯域幅のボトルネックに苦しんでいる。
開発者やランタイムシステムにとって、すべての重要なリソースが単一のアプリケーションによって完全に悪用されることを保証するのは難しいため、魅力的なテクニックは、複数のアプリケーションを同じサーバに配置することです。
まず,ハードウェアの性能カウンタに基づいて,コロケーションされたアプリケーションの性能劣化をモデル化することにより,サーバ効率を向上できることを示す。
論文 参考訳(メタデータ) (2021-03-16T12:35:35Z) - Edge Intelligence for Energy-efficient Computation Offloading and
Resource Allocation in 5G Beyond [7.953533529450216]
さらに5Gは、エッジデバイス、エッジサーバ、クラウドの異種機能を活用可能な、エッジクラウドオーケストレーションネットワークである。
マルチユーザ無線ネットワークでは、多様なアプリケーション要件とデバイス間の通信のための様々な無線アクセスモードの可能性により、最適な計算オフロード方式の設計が困難になる。
深層強化学習(Dep Reinforcement Learning, DRL)は、そのような問題に限定的で精度の低いネットワーク情報で対処する新興技術である。
論文 参考訳(メタデータ) (2020-11-17T05:51:03Z) - Reinforcement Learning on Computational Resource Allocation of
Cloud-based Wireless Networks [22.06811314358283]
IoT(Internet of Things)に使用される無線ネットワークには、主にクラウドベースのコンピューティングと処理が関与することが期待されている。
クラウド環境では、プロセスのパフォーマンスを維持しながらエネルギーを節約するために、動的計算資源割り当てが不可欠である。
本稿では、この動的計算資源割当問題をマルコフ決定プロセス(MDP)にモデル化し、CPU使用量の動的リソース割当を最適化するためのモデルベース強化学習エージェントを設計する。
その結果, エージェントは最適方針に迅速に収束し, 異なる設定で安定して動作し, 性能が良く, あるいは少なくとも等しく動作し, 異なるシナリオでの省エネにおけるベースラインアルゴリズムと比較した。
論文 参考訳(メタデータ) (2020-10-10T15:16:26Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
マイクログリッドを用いたMECネットワークにおけるリスク対応エネルギースケジューリング問題について検討する。
ニューラルネットワークを用いたマルチエージェントディープ強化学習(MADRL)に基づくアドバンテージアクター・クリティック(A3C)アルゴリズムを適用し,その解を導出する。
論文 参考訳(メタデータ) (2020-02-21T02:14:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。