論文の概要: AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation
Framework
- arxiv url: http://arxiv.org/abs/2308.08155v1
- Date: Wed, 16 Aug 2023 05:57:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-17 14:56:05.640794
- Title: AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation
Framework
- Title(参考訳): AutoGen:マルチエージェント対話フレームワークによる次世代LLMアプリケーションの実現
- Authors: Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang
Zhu, Beibin Li, Li Jiang, Xiaoyun Zhang, and Chi Wang
- Abstract要約: AutoGenは、タスクを解決するために相互に会話できる複数のエージェントを使用したアプリケーション開発を可能にする新しいフレームワークである。
開発者がAutoGenを使ってタスクを効果的に解決したり、アプリケーションをビルドする方法について、さまざまな例を提供しています。
- 参考スコア(独自算出の注目度): 43.90842146396152
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This technical report presents AutoGen, a new framework that enables
development of LLM applications using multiple agents that can converse with
each other to solve tasks. AutoGen agents are customizable, conversable, and
seamlessly allow human participation. They can operate in various modes that
employ combinations of LLMs, human inputs, and tools. AutoGen's design offers
multiple advantages: a) it gracefully navigates the strong but imperfect
generation and reasoning abilities of these LLMs; b) it leverages human
understanding and intelligence, while providing valuable automation through
conversations between agents; c) it simplifies and unifies the implementation
of complex LLM workflows as automated agent chats. We provide many diverse
examples of how developers can easily use AutoGen to effectively solve tasks or
build applications, ranging from coding, mathematics, operations research,
entertainment, online decision-making, question answering, etc.
- Abstract(参考訳): この技術レポートは、複数のエージェントを使ってタスクを解決し合うLLMアプリケーションの開発を可能にする新しいフレームワークであるAutoGenを提示する。
AutoGenエージェントはカスタマイズ可能で、会話可能で、シームレスに人間の参加を可能にする。
LLM、ヒューマンインプット、ツールを組み合わせた様々なモードで運用することができる。
AutoGenの設計にはいくつかの利点がある。
a) これらのLSMの強大かつ不完全な生成及び推論能力について優雅に航行する。
b) エージェント間の会話を通じて有用な自動化を提供しながら,人間の理解と知性を活用すること。
c) 複雑なLLMワークフローの実装を自動化されたエージェントチャットとして単純化し、統一する。
コーディング、数学、オペレーションリサーチ、エンターテイメント、オンライン意思決定、質問応答など、開発者がAutoGenを使ってタスクを効果的に解決したり、アプリケーションを構築できるさまざまな例を提供しています。
関連論文リスト
- BMW Agents -- A Framework For Task Automation Through Multi-Agent Collaboration [0.0]
我々は、様々なドメインにわたる複雑なユースケースアプリケーションを扱う柔軟なエージェントエンジニアリングフレームワークの設計に重点を置いている。
提案するフレームワークは,産業用アプリケーションの信頼性を提供し,複数の自律エージェントに対して,スケーラブルでフレキシブルで協調的なワークフローを保証するためのテクニックを提供する。
論文 参考訳(メタデータ) (2024-06-28T16:39:20Z) - From Language Models to Practical Self-Improving Computer Agents [0.8547032097715571]
我々は、多様なコンピュータタスクを実行し、自己改善できるAIコンピュータエージェントを作成するための方法論を開発する。
我々は、LLMエージェントに検索、インターネット検索、Webナビゲーション、テキストエディタ機能を増強するよう促す。
このエージェントは、これらの様々なツールを効果的に利用して、自動ソフトウェア開発やWebベースのタスクを含む問題を解決する。
論文 参考訳(メタデータ) (2024-04-18T07:50:10Z) - AgentLite: A Lightweight Library for Building and Advancing
Task-Oriented LLM Agent System [91.41155892086252]
LLMエージェントの研究を簡略化する新しいAIエージェントライブラリであるAgentLiteをオープンソースとして公開する。
AgentLiteは、タスクを分解するエージェントの機能を強化するために設計されたタスク指向フレームワークである。
我々は,その利便性と柔軟性を示すために,AgentLiteで開発された実用アプリケーションを紹介した。
論文 参考訳(メタデータ) (2024-02-23T06:25:20Z) - Executable Code Actions Elicit Better LLM Agents [76.95566120678787]
この研究は、Pythonコードを使用して、Large Language Model(LLM)エージェントのアクションを統一されたアクション空間(CodeAct)に統合することを提案する。
Pythonインタプリタと統合されたCodeActは、コードアクションを実行し、事前アクションを動的に修正したり、マルチターンインタラクションを通じて新しい観察に新しいアクションを発行することができる。
CodeActのパフォーマンス向上は、解釈可能なコードを実行し、自然言語を使ってユーザとコラボレーションすることで、環境と対話するオープンソースのLLMエージェントを構築する動機となります。
論文 参考訳(メタデータ) (2024-02-01T21:38:58Z) - Exploring Large Language Model based Intelligent Agents: Definitions,
Methods, and Prospects [32.91556128291915]
本稿では, シングルエージェントおよびマルチエージェントシステムにおける知的エージェントの詳細な概要を提供するため, 現在の研究状況について調査する。
定義、研究フレームワーク、その構成、認知と計画方法、ツール利用、環境フィードバックに対する反応などの基礎的な構成要素を網羅する。
我々は、AIと自然言語処理の進化の展望を考慮し、LLMベースのエージェントの展望を思い浮かべて結論付ける。
論文 参考訳(メタデータ) (2024-01-07T09:08:24Z) - AppAgent: Multimodal Agents as Smartphone Users [23.318925173980446]
我々のフレームワークは、エージェントが簡易なアクション空間を通じてスマートフォンアプリケーションを操作できるようにする。
エージェントは、自律的な探索または人間のデモを観察して、新しいアプリをナビゲートし、使用することを学ぶ。
エージェントの実用性を実証するため、10種類のアプリケーションで50以上のタスクを広範囲にテストした。
論文 参考訳(メタデータ) (2023-12-21T11:52:45Z) - LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
本稿では,LMRL-Gymベンチマークを用いて,大規模言語モデル(LLM)のマルチターンRLの評価を行う。
我々のベンチマークは8つの異なる言語タスクで構成されており、複数ラウンドの言語相互作用が必要であり、オープンエンド対話やテキストゲームにおける様々なタスクをカバーする。
論文 参考訳(メタデータ) (2023-11-30T03:59:31Z) - TaskWeaver: A Code-First Agent Framework [50.99683051759488]
TaskWeaverは、LLMで動く自律エージェントを構築するためのコードファーストフレームワークである。
ユーザ要求を実行可能なコードに変換し、ユーザ定義プラグインを呼び出し可能な関数として扱う。
リッチなデータ構造、フレキシブルなプラグイン利用、動的プラグイン選択のサポートを提供する。
論文 参考訳(メタデータ) (2023-11-29T11:23:42Z) - MAgIC: Investigation of Large Language Model Powered Multi-Agent in
Cognition, Adaptability, Rationality and Collaboration [102.41118020705876]
大規模言語モデル(LLM)は自然言語処理の分野で大きな進歩を遂げている。
アプリケーションがマルチエージェント環境に拡張されるにつれ、包括的な評価フレームワークの必要性が高まっている。
この研究は、マルチエージェント設定内でLLMを評価するために特別に設計された新しいベンチマークフレームワークを導入している。
論文 参考訳(メタデータ) (2023-11-14T21:46:27Z) - AutoAgents: A Framework for Automatic Agent Generation [27.74332323317923]
AutoAgentsは、さまざまなタスクに応じてAIチームを構築するために、複数の専門エージェントを適応的に生成し、コーディネートする革新的なフレームワークである。
各種ベンチマーク実験により,AutoAgentsは既存のマルチエージェント手法よりも一貫性と正確な解を生成することが示された。
論文 参考訳(メタデータ) (2023-09-29T14:46:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。