論文の概要: AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation
- arxiv url: http://arxiv.org/abs/2308.08155v2
- Date: Tue, 3 Oct 2023 20:47:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-05 18:31:49.304200
- Title: AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation
- Title(参考訳): AutoGen:マルチエージェント会話による次世代LLMアプリケーションの実現
- Authors: Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang
Zhu, Li Jiang, Xiaoyun Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan
Awadallah, Ryen W White, Doug Burger, and Chi Wang
- Abstract要約: AutoGenはオープンソースのフレームワークで、複数のエージェントを介してLLMアプリケーションを構築することができる。
AutoGenエージェントはカスタマイズ可能で、変換可能で、LLM、ヒューマンインプット、ツールの組み合わせを使った様々なモードで操作できる。
- 参考スコア(独自算出の注目度): 61.455159391215915
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: AutoGen is an open-source framework that allows developers to build LLM
applications via multiple agents that can converse with each other to
accomplish tasks. AutoGen agents are customizable, conversable, and can operate
in various modes that employ combinations of LLMs, human inputs, and tools.
Using AutoGen, developers can also flexibly define agent interaction behaviors.
Both natural language and computer code can be used to program flexible
conversation patterns for different applications. AutoGen serves as a generic
infrastructure to build diverse applications of various complexities and LLM
capacities. Empirical studies demonstrate the effectiveness of the framework in
many example applications, with domains ranging from mathematics, coding,
question answering, operations research, online decision-making, entertainment,
etc.
- Abstract(参考訳): AutoGenはオープンソースのフレームワークで、複数のエージェントを介してLLMアプリケーションを構築することができる。
AutoGenエージェントはカスタマイズ可能で、変換可能で、LLM、ヒューマンインプット、ツールの組み合わせを使った様々なモードで動作する。
AutoGenを使うことで、開発者はエージェントのインタラクション動作を柔軟に定義できる。
自然言語とコンピュータコードは、異なるアプリケーションに対して柔軟な会話パターンをプログラムするために使用できる。
AutoGenは、様々な複雑さとLLM能力の多様なアプリケーションを構築するための一般的なインフラとして機能する。
実証的な研究は、数学、コーディング、質問応答、運用研究、オンライン意思決定、エンターテイメントなど、多くの例でフレームワークの有効性を実証している。
関連論文リスト
- BMW Agents -- A Framework For Task Automation Through Multi-Agent Collaboration [0.0]
我々は、様々なドメインにわたる複雑なユースケースアプリケーションを扱う柔軟なエージェントエンジニアリングフレームワークの設計に重点を置いている。
提案するフレームワークは,産業用アプリケーションの信頼性を提供し,複数の自律エージェントに対して,スケーラブルでフレキシブルで協調的なワークフローを保証するためのテクニックを提供する。
論文 参考訳(メタデータ) (2024-06-28T16:39:20Z) - From Language Models to Practical Self-Improving Computer Agents [0.8547032097715571]
我々は、多様なコンピュータタスクを実行し、自己改善できるAIコンピュータエージェントを作成するための方法論を開発する。
我々は、LLMエージェントに検索、インターネット検索、Webナビゲーション、テキストエディタ機能を増強するよう促す。
このエージェントは、これらの様々なツールを効果的に利用して、自動ソフトウェア開発やWebベースのタスクを含む問題を解決する。
論文 参考訳(メタデータ) (2024-04-18T07:50:10Z) - AgentLite: A Lightweight Library for Building and Advancing
Task-Oriented LLM Agent System [91.41155892086252]
LLMエージェントの研究を簡略化する新しいAIエージェントライブラリであるAgentLiteをオープンソースとして公開する。
AgentLiteは、タスクを分解するエージェントの機能を強化するために設計されたタスク指向フレームワークである。
我々は,その利便性と柔軟性を示すために,AgentLiteで開発された実用アプリケーションを紹介した。
論文 参考訳(メタデータ) (2024-02-23T06:25:20Z) - Executable Code Actions Elicit Better LLM Agents [76.95566120678787]
この研究は、Pythonコードを使用して、Large Language Model(LLM)エージェントのアクションを統一されたアクション空間(CodeAct)に統合することを提案する。
Pythonインタプリタと統合されたCodeActは、コードアクションを実行し、事前アクションを動的に修正したり、マルチターンインタラクションを通じて新しい観察に新しいアクションを発行することができる。
CodeActのパフォーマンス向上は、解釈可能なコードを実行し、自然言語を使ってユーザとコラボレーションすることで、環境と対話するオープンソースのLLMエージェントを構築する動機となります。
論文 参考訳(メタデータ) (2024-02-01T21:38:58Z) - Exploring Large Language Model based Intelligent Agents: Definitions,
Methods, and Prospects [32.91556128291915]
本稿では, シングルエージェントおよびマルチエージェントシステムにおける知的エージェントの詳細な概要を提供するため, 現在の研究状況について調査する。
定義、研究フレームワーク、その構成、認知と計画方法、ツール利用、環境フィードバックに対する反応などの基礎的な構成要素を網羅する。
我々は、AIと自然言語処理の進化の展望を考慮し、LLMベースのエージェントの展望を思い浮かべて結論付ける。
論文 参考訳(メタデータ) (2024-01-07T09:08:24Z) - AppAgent: Multimodal Agents as Smartphone Users [23.318925173980446]
我々のフレームワークは、エージェントが簡易なアクション空間を通じてスマートフォンアプリケーションを操作できるようにする。
エージェントは、自律的な探索または人間のデモを観察して、新しいアプリをナビゲートし、使用することを学ぶ。
エージェントの実用性を実証するため、10種類のアプリケーションで50以上のタスクを広範囲にテストした。
論文 参考訳(メタデータ) (2023-12-21T11:52:45Z) - LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
本稿では,LMRL-Gymベンチマークを用いて,大規模言語モデル(LLM)のマルチターンRLの評価を行う。
我々のベンチマークは8つの異なる言語タスクで構成されており、複数ラウンドの言語相互作用が必要であり、オープンエンド対話やテキストゲームにおける様々なタスクをカバーする。
論文 参考訳(メタデータ) (2023-11-30T03:59:31Z) - TaskWeaver: A Code-First Agent Framework [50.99683051759488]
TaskWeaverは、LLMで動く自律エージェントを構築するためのコードファーストフレームワークである。
ユーザ要求を実行可能なコードに変換し、ユーザ定義プラグインを呼び出し可能な関数として扱う。
リッチなデータ構造、フレキシブルなプラグイン利用、動的プラグイン選択のサポートを提供する。
論文 参考訳(メタデータ) (2023-11-29T11:23:42Z) - MAgIC: Investigation of Large Language Model Powered Multi-Agent in
Cognition, Adaptability, Rationality and Collaboration [102.41118020705876]
大規模言語モデル(LLM)は自然言語処理の分野で大きな進歩を遂げている。
アプリケーションがマルチエージェント環境に拡張されるにつれ、包括的な評価フレームワークの必要性が高まっている。
この研究は、マルチエージェント設定内でLLMを評価するために特別に設計された新しいベンチマークフレームワークを導入している。
論文 参考訳(メタデータ) (2023-11-14T21:46:27Z) - AutoAgents: A Framework for Automatic Agent Generation [27.74332323317923]
AutoAgentsは、さまざまなタスクに応じてAIチームを構築するために、複数の専門エージェントを適応的に生成し、コーディネートする革新的なフレームワークである。
各種ベンチマーク実験により,AutoAgentsは既存のマルチエージェント手法よりも一貫性と正確な解を生成することが示された。
論文 参考訳(メタデータ) (2023-09-29T14:46:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。