Self-Reference Deep Adaptive Curve Estimation for Low-Light Image
Enhancement
- URL: http://arxiv.org/abs/2308.08197v4
- Date: Sun, 10 Sep 2023 10:53:48 GMT
- Title: Self-Reference Deep Adaptive Curve Estimation for Low-Light Image
Enhancement
- Authors: Jianyu Wen, Chenhao Wu, Tong Zhang, Yixuan Yu, Piotr Swierczynski
- Abstract summary: We propose a 2-stage low-light image enhancement method called Self-Reference Deep Adaptive Curve Estimation (Self-DACE)
In the first stage, we present an intuitive, lightweight, fast, and unsupervised luminance enhancement algorithm.
We also propose a new loss function with a simplified physical model designed to preserve natural images' color, structure, and fidelity.
- Score: 7.253235412867934
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a 2-stage low-light image enhancement method called
Self-Reference Deep Adaptive Curve Estimation (Self-DACE). In the first stage,
we present an intuitive, lightweight, fast, and unsupervised luminance
enhancement algorithm. The algorithm is based on a novel low-light enhancement
curve that can be used to locally boost image brightness. We also propose a new
loss function with a simplified physical model designed to preserve natural
images' color, structure, and fidelity. We use a vanilla CNN to map each pixel
through deep Adaptive Adjustment Curves (AAC) while preserving the local image
structure. Secondly, we introduce the corresponding denoising scheme to remove
the latent noise in the darkness. We approximately model the noise in the dark
and deploy a Denoising-Net to estimate and remove the noise after the first
stage. Exhaustive qualitative and quantitative analysis shows that our method
outperforms existing state-of-the-art algorithms on multiple real-world
datasets.
Related papers
- Unsupervised Low-light Image Enhancement with Lookup Tables and Diffusion Priors [38.96909959677438]
Low-light image enhancement (LIE) aims at precisely and efficiently recovering an image degraded in poor illumination environments.
Recent advanced LIE techniques are using deep neural networks, which require lots of low-normal light image pairs, network parameters, and computational resources.
We devise a novel unsupervised LIE framework based on diffusion priors and lookup tables to achieve efficient low-light image recovery.
arXiv Detail & Related papers (2024-09-27T16:37:27Z) - DPEC: Dual-Path Error Compensation Method for Enhanced Low-Light Image Clarity [2.8161423494191222]
We propose the Dual-Path Error Compensation (DPEC) method to improve image quality under low-light conditions.
DPEC incorporates precise pixel-level error estimation to capture subtle differences and an independent denoising mechanism to prevent noise amplification.
Comprehensive quantitative and qualitative experimental results demonstrate that our algorithm significantly outperforms state-of-the-art methods in low-light image enhancement.
arXiv Detail & Related papers (2024-06-28T08:21:49Z) - Advancing Unsupervised Low-light Image Enhancement: Noise Estimation, Illumination Interpolation, and Self-Regulation [55.07472635587852]
Low-Light Image Enhancement (LLIE) techniques have made notable advancements in preserving image details and enhancing contrast.
These approaches encounter persistent challenges in efficiently mitigating dynamic noise and accommodating diverse low-light scenarios.
We first propose a method for estimating the noise level in low light images in a quick and accurate way.
We then devise a Learnable Illumination Interpolator (LII) to satisfy general constraints between illumination and input.
arXiv Detail & Related papers (2023-05-17T13:56:48Z) - Curvature regularization for Non-line-of-sight Imaging from
Under-sampled Data [5.591221518341613]
Non-line-of-sight (NLOS) imaging aims to reconstruct the three-dimensional hidden scenes from the data measured in the line-of-sight.
We propose novel NLOS reconstruction models based on curvature regularization.
We evaluate the proposed algorithms on both synthetic and real datasets.
arXiv Detail & Related papers (2023-01-01T14:10:43Z) - Zero-shot Blind Image Denoising via Implicit Neural Representations [77.79032012459243]
We propose an alternative denoising strategy that leverages the architectural inductive bias of implicit neural representations (INRs)
We show that our method outperforms existing zero-shot denoising methods under an extensive set of low-noise or real-noise scenarios.
arXiv Detail & Related papers (2022-04-05T12:46:36Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z) - Deep Bilateral Retinex for Low-Light Image Enhancement [96.15991198417552]
Low-light images suffer from poor visibility caused by low contrast, color distortion and measurement noise.
This paper proposes a deep learning method for low-light image enhancement with a particular focus on handling the measurement noise.
The proposed method is very competitive to the state-of-the-art methods, and has significant advantage over others when processing images captured in extremely low lighting conditions.
arXiv Detail & Related papers (2020-07-04T06:26:44Z) - Unsupervised Low-light Image Enhancement with Decoupled Networks [103.74355338972123]
We learn a two-stage GAN-based framework to enhance the real-world low-light images in a fully unsupervised fashion.
Our proposed method outperforms the state-of-the-art unsupervised image enhancement methods in terms of both illumination enhancement and noise reduction.
arXiv Detail & Related papers (2020-05-06T13:37:08Z) - Learning an Adaptive Model for Extreme Low-light Raw Image Processing [5.706764509663774]
We propose an adaptive low-light raw image enhancement network to improve image quality.
The proposed method has the lowest Noise Level Estimation (NLE) score compared with the state-of-the-art low-light algorithms.
The potential application in video processing is briefly discussed.
arXiv Detail & Related papers (2020-04-22T09:01:07Z) - Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement [156.18634427704583]
The paper presents a novel method, Zero-Reference Deep Curve Estimation (Zero-DCE), which formulates light enhancement as a task of image-specific curve estimation with a deep network.
Our method trains a lightweight deep network, DCE-Net, to estimate pixel-wise and high-order curves for dynamic range adjustment of a given image.
arXiv Detail & Related papers (2020-01-19T13:49:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.