ECPC-IDS:A benchmark endometrail cancer PET/CT image dataset for
evaluation of semantic segmentation and detection of hypermetabolic regions
- URL: http://arxiv.org/abs/2308.08313v3
- Date: Wed, 11 Oct 2023 13:55:29 GMT
- Title: ECPC-IDS:A benchmark endometrail cancer PET/CT image dataset for
evaluation of semantic segmentation and detection of hypermetabolic regions
- Authors: Dechao Tang, Tianming Du, Deguo Ma, Zhiyu Ma, Hongzan Sun, Marcin
Grzegorzek, Huiyan Jiang, Chen Li
- Abstract summary: Endometrial cancer is one of the most common tumors in the female reproductive system.
This dataset is the first publicly available dataset of endometrial cancer with a large number of multiple images.
- Score: 7.420919215687338
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Endometrial cancer is one of the most common tumors in the female
reproductive system and is the third most common gynecological malignancy that
causes death after ovarian and cervical cancer. Early diagnosis can
significantly improve the 5-year survival rate of patients. With the
development of artificial intelligence, computer-assisted diagnosis plays an
increasingly important role in improving the accuracy and objectivity of
diagnosis, as well as reducing the workload of doctors. However, the absence of
publicly available endometrial cancer image datasets restricts the application
of computer-assisted diagnostic techniques.In this paper, a publicly available
Endometrial Cancer PET/CT Image Dataset for Evaluation of Semantic Segmentation
and Detection of Hypermetabolic Regions (ECPC-IDS) are published. Specifically,
the segmentation section includes PET and CT images, with a total of 7159
images in multiple formats. In order to prove the effectiveness of segmentation
methods on ECPC-IDS, five classical deep learning semantic segmentation methods
are selected to test the image segmentation task. The object detection section
also includes PET and CT images, with a total of 3579 images and XML files with
annotation information. Six deep learning methods are selected for experiments
on the detection task.This study conduct extensive experiments using deep
learning-based semantic segmentation and object detection methods to
demonstrate the differences between various methods on ECPC-IDS. As far as we
know, this is the first publicly available dataset of endometrial cancer with a
large number of multiple images, including a large amount of information
required for image and target detection. ECPC-IDS can aid researchers in
exploring new algorithms to enhance computer-assisted technology, benefiting
both clinical doctors and patients greatly.
Related papers
- AI-based Automatic Segmentation of Prostate on Multi-modality Images: A Review [17.187976904150545]
Early detection is vital in reducing the mortality rate among prostate cancer patients.
Prostate segmentation is challenging due to imperfections in the images and the prostate's complex tissue structure.
Recent machine learning and data mining tools have been integrated into various medical areas, including image segmentation.
arXiv Detail & Related papers (2024-07-09T07:36:18Z) - Cancer-Net PCa-Data: An Open-Source Benchmark Dataset for Prostate
Cancer Clinical Decision Support using Synthetic Correlated Diffusion Imaging
Data [75.77035221531261]
Cancer-Net PCa-Data is an open-source benchmark dataset of volumetric CDI$s$ imaging data of PCa patients.
Cancer-Net PCa-Data is the first-ever public dataset of CDI$s$ imaging data for PCa.
arXiv Detail & Related papers (2023-11-20T10:28:52Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
We propose a few-shot-based approach for skin lesions that generalizes well with few labelled data.
The proposed approach comprises a fusion of a segmentation network that acts as an attention module and classification network.
arXiv Detail & Related papers (2023-10-11T05:49:47Z) - Post-Hoc Explainability of BI-RADS Descriptors in a Multi-task Framework
for Breast Cancer Detection and Segmentation [48.08423125835335]
MT-BI-RADS is a novel explainable deep learning approach for tumor detection in Breast Ultrasound (BUS) images.
It offers three levels of explanations to enable radiologists to comprehend the decision-making process in predicting tumor malignancy.
arXiv Detail & Related papers (2023-08-27T22:07:42Z) - CARE: A Large Scale CT Image Dataset and Clinical Applicable Benchmark
Model for Rectal Cancer Segmentation [8.728236864462302]
Rectal cancer segmentation of CT image plays a crucial role in timely clinical diagnosis, radiotherapy treatment, and follow-up.
These obstacles arise from the intricate anatomical structures of the rectum and the difficulties in performing differential diagnosis of rectal cancer.
To address these issues, this work introduces a novel large scale rectal cancer CT image dataset CARE with pixel-level annotations for both normal and cancerous rectum.
We also propose a novel medical cancer lesion segmentation benchmark model named U-SAM.
The model is specifically designed to tackle the challenges posed by the intricate anatomical structures of abdominal organs by incorporating prompt information.
arXiv Detail & Related papers (2023-08-16T10:51:27Z) - BMAD: Benchmarks for Medical Anomaly Detection [51.22159321912891]
Anomaly detection (AD) is a fundamental research problem in machine learning and computer vision.
In medical imaging, AD is especially vital for detecting and diagnosing anomalies that may indicate rare diseases or conditions.
We introduce a comprehensive evaluation benchmark for assessing anomaly detection methods on medical images.
arXiv Detail & Related papers (2023-06-20T20:23:46Z) - EBHI-Seg: A Novel Enteroscope Biopsy Histopathological Haematoxylin and
Eosin Image Dataset for Image Segmentation Tasks [21.17913442266469]
Colorectal cancer is a common fatal malignancy, the fourth most common cancer in men, and the third most common cancer in women worldwide.
There is a lack of datasets for histological image segmentation of rectal cancer, which often hampers the assessment accuracy when computer technology is used to aid in diagnosis.
This dataset can provide researchers with new segmentation algorithms for medical diagnosis of colorectal cancer, which can be used in the clinical setting to help doctors and patients.
arXiv Detail & Related papers (2022-12-01T14:37:12Z) - Lesion detection in contrast enhanced spectral mammography [0.0]
The recent emergence of neural networks models for the analysis of breast images has been a breakthrough in computer aided diagnostic.
This work proposes a deep-learning-based Computer Aided Diagnostic development for CESM recombined images able to detect lesions and classify cases.
arXiv Detail & Related papers (2022-07-20T06:49:02Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
This paper introduces BI-RADS-Net, a novel explainable deep learning approach for cancer detection in breast ultrasound images.
The proposed approach incorporates tasks for explaining and classifying breast tumors, by learning feature representations relevant to clinical diagnosis.
Explanations of the predictions (benign or malignant) are provided in terms of morphological features that are used by clinicians for diagnosis and reporting in medical practice.
arXiv Detail & Related papers (2021-10-05T19:14:46Z) - Learning from Suspected Target: Bootstrapping Performance for Breast
Cancer Detection in Mammography [6.323318523772466]
We introduce a novel top likelihood loss together with a new sampling procedure to select and train the suspected target regions.
We firstly test our proposed method on a private dense mammogram dataset.
Results show that our proposed method greatly reduce the false positive rate and the specificity is increased by 0.25 on detecting mass type cancer.
arXiv Detail & Related papers (2020-03-01T09:04:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.