Lesion detection in contrast enhanced spectral mammography
- URL: http://arxiv.org/abs/2207.09692v1
- Date: Wed, 20 Jul 2022 06:49:02 GMT
- Title: Lesion detection in contrast enhanced spectral mammography
- Authors: Cl\'ement Jailin (GE Healthcare), Pablo Milioni (GE Healthcare),
Zhijin Li (GE Healthcare), R\u{a}zvan Iordache (GE Healthcare), Serge Muller
(GE Healthcare)
- Abstract summary: The recent emergence of neural networks models for the analysis of breast images has been a breakthrough in computer aided diagnostic.
This work proposes a deep-learning-based Computer Aided Diagnostic development for CESM recombined images able to detect lesions and classify cases.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Background \& purpose: The recent emergence of neural networks models for the
analysis of breast images has been a breakthrough in computer aided diagnostic.
This approach was not yet developed in Contrast Enhanced Spectral Mammography
(CESM) where access to large databases is complex. This work proposes a
deep-learning-based Computer Aided Diagnostic development for CESM recombined
images able to detect lesions and classify cases. Material \& methods: A large
CESM diagnostic dataset with biopsy-proven lesions was collected from various
hospitals and different acquisition systems. The annotated data were split on a
patient level for the training (55%), validation (15%) and test (30%) of a deep
neural network with a state-of-the-art detection architecture. Free Receiver
Operating Characteristic (FROC) was used to evaluate the model for the
detection of 1) all lesions, 2) biopsied lesions and 3) malignant lesions. ROC
curve was used to evaluate breast cancer classification. The metrics were
finally compared to clinical results. Results: For the evaluation of the
malignant lesion detection, at high sensitivity (Se>0.95), the false positive
rate was at 0.61 per image. For the classification of malignant cases, the
model reached an Area Under the Curve (AUC) in the range of clinical CESM
diagnostic results. Conclusion: This CAD is the first development of a lesion
detection and classification model for CESM images. Trained on a large dataset,
it has the potential to be used for helping the management of biopsy decision
and for helping the radiologist detecting complex lesions that could modify the
clinical treatment.
Related papers
- Bridging the Diagnostic Divide: Classical Computer Vision and Advanced AI methods for distinguishing ITB and CD through CTE Scans [2.900410045439515]
A consensus among radiologists has recognized the visceral-to-subcutaneous fat ratio as a surrogate biomarker for differentiating between ITB and CD.
We propose a novel 2D image computer vision algorithm for auto-segmenting subcutaneous fat to automate this ratio calculation.
We trained a ResNet10 model on a dataset of CTE scans with samples from ITB, CD, and normal patients, achieving an accuracy of 75%.
arXiv Detail & Related papers (2024-10-23T17:05:27Z) - An Attention Based Pipeline for Identifying Pre-Cancer Lesions in Head and Neck Clinical Images [1.0957311485487375]
Head and neck cancer is diagnosed in specialist centres after a surgical biopsy, but there is a potential for these to be missed leading to delayed diagnosis.
We present an attention based pipeline that identifies suspected lesions, segments, and classifies them as non-dysplastic, dysplastic and cancerous lesions.
arXiv Detail & Related papers (2024-05-03T09:02:17Z) - Improving the diagnosis of breast cancer based on biophysical ultrasound
features utilizing machine learning [0.0]
We propose a biophysical feature based machine learning method for breast cancer detection.
The overall accuracy for the most common types and sizes of breast lesions in our study exceeded 98.0% for classification and 0.98 for an area under the receiver operating characteristic curve.
arXiv Detail & Related papers (2022-07-13T23:53:09Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
Motion artefacts in magnetic resonance brain images are a crucial issue.
The assessment of MR image quality is fundamental before proceeding with the clinical diagnosis.
An automated image quality assessment based on the structural similarity index (SSIM) regression has been proposed here.
arXiv Detail & Related papers (2022-06-14T10:16:54Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - DenseNet approach to segmentation and classification of dermatoscopic
skin lesions images [0.0]
This paper proposes an improved method for segmentation and classification for skin lesions using two architectures.
The combination of U-Net and DenseNet121 provides acceptable results in dermatoscopic image analysis.
cancerous and non-cancerous samples were detected in DenseNet121 network with 79.49% and 93.11% accuracy respectively.
arXiv Detail & Related papers (2021-10-09T19:12:23Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
This paper introduces BI-RADS-Net, a novel explainable deep learning approach for cancer detection in breast ultrasound images.
The proposed approach incorporates tasks for explaining and classifying breast tumors, by learning feature representations relevant to clinical diagnosis.
Explanations of the predictions (benign or malignant) are provided in terms of morphological features that are used by clinicians for diagnosis and reporting in medical practice.
arXiv Detail & Related papers (2021-10-05T19:14:46Z) - Segmentation and ABCD rule extraction for skin tumors classification [0.0]
We present an automated diagnosis system based on the ABCD rule used in clinical diagnosis in order to discriminate benign from malignant skin lesions.
This framework has been tested on a dermoscopic database [16] of 320 images.
arXiv Detail & Related papers (2021-06-08T14:07:59Z) - Controlling False Positive/Negative Rates for Deep-Learning-Based
Prostate Cancer Detection on Multiparametric MR images [58.85481248101611]
We propose a novel PCa detection network that incorporates a lesion-level cost-sensitive loss and an additional slice-level loss based on a lesion-to-slice mapping function.
Our experiments based on 290 clinical patients concludes that 1) The lesion-level FNR was effectively reduced from 0.19 to 0.10 and the lesion-level FPR was reduced from 1.03 to 0.66 by changing the lesion-level cost.
arXiv Detail & Related papers (2021-06-04T09:51:27Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
We consider machine-learning-based malignancy prediction and lesion identification from clinical dermatological images.
We first identify all lesions present in the image regardless of sub-type or likelihood of malignancy, then it estimates their likelihood of malignancy, and through aggregation, it also generates an image-level likelihood of malignancy.
arXiv Detail & Related papers (2021-04-02T20:52:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.