Precision and Recall Reject Curves for Classification
- URL: http://arxiv.org/abs/2308.08381v3
- Date: Thu, 14 Mar 2024 08:19:15 GMT
- Title: Precision and Recall Reject Curves for Classification
- Authors: Lydia Fischer, Patricia Wollstadt,
- Abstract summary: We propose reject curves that evaluate precision and recall, the recall-reject curve and the precision-reject curve.
We show on imbalanced benchmarks and medical, real-world data that for these scenarios, the proposed precision- and recall-curves yield more accurate insights.
- Score: 1.2507543279181126
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For some classification scenarios, it is desirable to use only those classification instances that a trained model associates with a high certainty. To obtain such high-certainty instances, previous work has proposed accuracy-reject curves. Reject curves allow to evaluate and compare the performance of different certainty measures over a range of thresholds for accepting or rejecting classifications. However, the accuracy may not be the most suited evaluation metric for all applications, and instead precision or recall may be preferable. This is the case, for example, for data with imbalanced class distributions. We therefore propose reject curves that evaluate precision and recall, the recall-reject curve and the precision-reject curve. Using prototype-based classifiers from learning vector quantization, we first validate the proposed curves on artificial benchmark data against the accuracy reject curve as a baseline. We then show on imbalanced benchmarks and medical, real-world data that for these scenarios, the proposed precision- and recall-curves yield more accurate insights into classifier performance than accuracy reject curves.
Related papers
- Ask for More Than Bayes Optimal: A Theory of Indecisions for Classification [1.8434042562191815]
Selective classification is a powerful tool for automated decision-making in high-risk scenarios.
Our goal is to minimize the number of indecisions, which are observations that we do not automate.
By using indecisions, we are able to control the misclassification rate to any user-specified level, even below the Bayes optimal error rate.
arXiv Detail & Related papers (2024-12-17T11:25:51Z) - From Uncertainty to Precision: Enhancing Binary Classifier Performance
through Calibration [0.3495246564946556]
Given that model-predicted scores are commonly seen as event probabilities, calibration is crucial for accurate interpretation.
We analyze the sensitivity of various calibration measures to score distortions and introduce a refined metric, the Local Score.
We apply these findings in a real-world scenario using Random Forest classifier and regressor to predict credit default while simultaneously measuring calibration.
arXiv Detail & Related papers (2024-02-12T16:55:19Z) - Leveraging Uncertainty Estimates To Improve Classifier Performance [4.4951754159063295]
Binary classification involves predicting the label of an instance based on whether the model score for the positive class exceeds a threshold chosen based on the application requirements.
However, model scores are often not aligned with the true positivity rate.
This is especially true when the training involves a differential sampling across classes or there is distributional drift between train and test settings.
arXiv Detail & Related papers (2023-11-20T12:40:25Z) - Calibration by Distribution Matching: Trainable Kernel Calibration
Metrics [56.629245030893685]
We introduce kernel-based calibration metrics that unify and generalize popular forms of calibration for both classification and regression.
These metrics admit differentiable sample estimates, making it easy to incorporate a calibration objective into empirical risk minimization.
We provide intuitive mechanisms to tailor calibration metrics to a decision task, and enforce accurate loss estimation and no regret decisions.
arXiv Detail & Related papers (2023-10-31T06:19:40Z) - The Lipschitz-Variance-Margin Tradeoff for Enhanced Randomized Smoothing [85.85160896547698]
Real-life applications of deep neural networks are hindered by their unsteady predictions when faced with noisy inputs and adversarial attacks.
We show how to design an efficient classifier with a certified radius by relying on noise injection into the inputs.
Our novel certification procedure allows us to use pre-trained models with randomized smoothing, effectively improving the current certification radius in a zero-shot manner.
arXiv Detail & Related papers (2023-09-28T22:41:47Z) - Training Normalizing Flows with the Precision-Recall Divergence [73.92251251511199]
We show that achieving a specified precision-recall trade-off corresponds to minimising -divergences from a family we call the em PR-divergences
We propose a novel generative model that is able to train a normalizing flow to minimise any -divergence, and in particular, achieve a given precision-recall trade-off.
arXiv Detail & Related papers (2023-02-01T17:46:47Z) - Learning When to Say "I Don't Know" [0.5505634045241288]
We propose a new Reject Option Classification technique to identify and remove regions of uncertainty in the decision space.
We consider an alternative formulation by instead analyzing the complementary reject region and employing a validation set to learn per-class softmax thresholds.
We provide results showing the benefits of the proposed method over na"ively thresholding/uncalibrated softmax scores with 2-D points, imagery, and text classification datasets.
arXiv Detail & Related papers (2022-09-11T21:50:03Z) - Calibrated Selective Classification [34.08454890436067]
We develop a new approach to selective classification in which we propose a method for rejecting examples with "uncertain" uncertainties.
We present a framework for learning selectively calibrated models, where a separate selector network is trained to improve the selective calibration error of a given base model.
We demonstrate the empirical effectiveness of our approach on multiple image classification and lung cancer risk assessment tasks.
arXiv Detail & Related papers (2022-08-25T13:31:09Z) - Better Uncertainty Calibration via Proper Scores for Classification and
Beyond [15.981380319863527]
We introduce the framework of proper calibration errors, which relates every calibration error to a proper score.
This relationship can be used to reliably quantify the model calibration improvement.
arXiv Detail & Related papers (2022-03-15T12:46:08Z) - Self-Certifying Classification by Linearized Deep Assignment [65.0100925582087]
We propose a novel class of deep predictors for classifying metric data on graphs within PAC-Bayes risk certification paradigm.
Building on the recent PAC-Bayes literature and data-dependent priors, this approach enables learning posterior distributions on the hypothesis space.
arXiv Detail & Related papers (2022-01-26T19:59:14Z) - Evaluating State-of-the-Art Classification Models Against Bayes
Optimality [106.50867011164584]
We show that we can compute the exact Bayes error of generative models learned using normalizing flows.
We use our approach to conduct a thorough investigation of state-of-the-art classification models.
arXiv Detail & Related papers (2021-06-07T06:21:20Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
Marginal-likelihood based model-selection is rarely used in deep learning due to estimation difficulties.
Our work shows that marginal likelihoods can improve generalization and be useful when validation data is unavailable.
arXiv Detail & Related papers (2021-04-11T09:50:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.