LLM4TS: Aligning Pre-Trained LLMs as Data-Efficient Time-Series Forecasters
- URL: http://arxiv.org/abs/2308.08469v6
- Date: Thu, 20 Feb 2025 16:48:08 GMT
- Title: LLM4TS: Aligning Pre-Trained LLMs as Data-Efficient Time-Series Forecasters
- Authors: Ching Chang, Wei-Yao Wang, Wen-Chih Peng, Tien-Fu Chen,
- Abstract summary: We propose a framework for time-series forecasting with pre-trained Large Language Models (LLMs)<n>LLM4TS consists of a two-stage fine-tuning strategy to align LLMs with the nuances of time-series data, and the forecasting fine-tuning stage for downstream time-series forecasting tasks.<n>Our framework features a novel two-level aggregation method that integrates multi-scale temporal data within pre-trained LLMs, enhancing their ability to interpret time-specific information.
- Score: 11.796765525301051
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multivariate time-series forecasting is vital in various domains, e.g., economic planning and weather prediction. Deep train-from-scratch models have exhibited effective performance yet require large amounts of data, which limits real-world applicability. Recently, researchers have leveraged the representation learning transferability of pre-trained Large Language Models (LLMs) to handle limited non-linguistic datasets effectively. However, incorporating LLMs with time-series data presents challenges of limited adaptation due to different compositions between time-series and linguistic data, and the inability to process multi-scale temporal information. To tackle these challenges, we propose LLM4TS, a framework for time-series forecasting with pre-trained LLMs. LLM4TS consists of a two-stage fine-tuning strategy: the time-series alignment stage to align LLMs with the nuances of time-series data, and the forecasting fine-tuning stage for downstream time-series forecasting tasks. Furthermore, our framework features a novel two-level aggregation method that integrates multi-scale temporal data within pre-trained LLMs, enhancing their ability to interpret time-specific information. In experiments across 7 time-series forecasting datasets, LLM4TS is superior to existing state-of-the-art methods compared with trained-from-scratch models in full-shot scenarios, and also achieves the highest rank in few-shot scenarios. In addition, evaluations compared with different unsupervised representation learning approaches highlight LLM4TS's effectiveness with representation learning in forecasting tasks. Ablation studies further validate each component's contribution to LLM4TS and underscore the essential role of utilizing LLM's pre-trained weights for optimal performance. The code is available at https://github.com/blacksnail789521/LLM4TS.
Related papers
- Efficient Model Selection for Time Series Forecasting via LLMs [52.31535714387368]
We propose to leverage Large Language Models (LLMs) as a lightweight alternative for model selection.
Our method eliminates the need for explicit performance matrices by utilizing the inherent knowledge and reasoning capabilities of LLMs.
arXiv Detail & Related papers (2025-04-02T20:33:27Z) - LLM-PS: Empowering Large Language Models for Time Series Forecasting with Temporal Patterns and Semantics [56.99021951927683]
Time Series Forecasting (TSF) is critical in many real-world domains like financial planning and health monitoring.
Existing Large Language Models (LLMs) usually perform suboptimally because they neglect the inherent characteristics of time series data.
We propose LLM-PS to empower the LLM for TSF by learning the fundamental textitPatterns and meaningful textitSemantics from time series data.
arXiv Detail & Related papers (2025-03-12T11:45:11Z) - TimeCAP: Learning to Contextualize, Augment, and Predict Time Series Events with Large Language Model Agents [52.13094810313054]
TimeCAP is a time-series processing framework that creatively employs Large Language Models (LLMs) as contextualizers of time series data.
TimeCAP incorporates two independent LLM agents: one generates a textual summary capturing the context of the time series, while the other uses this enriched summary to make more informed predictions.
Experimental results on real-world datasets demonstrate that TimeCAP outperforms state-of-the-art methods for time series event prediction.
arXiv Detail & Related papers (2025-02-17T04:17:27Z) - Large Language Models are Few-shot Multivariate Time Series Classifiers [23.045734479292356]
Large Language Models (LLMs) have been extensively applied in time series analysis.
Yet, their utility in the few-shot classification (i.e., a crucial training scenario) is underexplored.
We aim to leverage the extensive pre-trained knowledge in LLMs to overcome the data scarcity problem.
arXiv Detail & Related papers (2025-01-30T03:59:59Z) - ChatTS: Aligning Time Series with LLMs via Synthetic Data for Enhanced Understanding and Reasoning [10.854285913078257]
This paper introduces ChatTS, a novel MLLM designed for time series analysis.
ChatTS treats time series as a modality, similar to how vision MLLMs process images.
Time Series Evol-Instruct generates diverse time series Q&As, enhancing the model's reasoning capabilities.
arXiv Detail & Related papers (2024-12-04T08:06:15Z) - TableTime: Reformulating Time Series Classification as Zero-Shot Table Understanding via Large Language Models [54.44272772296578]
Large language models (LLMs) have demonstrated their effectiveness in multivariate time series classification.
LLMs directly encode embeddings for time series within the latent space of LLMs from scratch to align with semantic space of LLMs.
We propose TableTime, which reformulates MTSC as a table understanding task.
arXiv Detail & Related papers (2024-11-24T07:02:32Z) - Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
"Context is Key" (CiK) is a time series forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context.
We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters.
Our experiments highlight the importance of incorporating contextual information, demonstrate surprising performance when using LLM-based forecasting models, and also reveal some of their critical shortcomings.
arXiv Detail & Related papers (2024-10-24T17:56:08Z) - LLM-Mixer: Multiscale Mixing in LLMs for Time Series Forecasting [0.08795040582681389]
LLM-Mixer is a framework that improves forecasting accuracy through the combination of multiscale time-series decomposition with pre-trained LLMs.
It captures both short-term fluctuations and long-term trends by decomposing the data into multiple temporal resolutions.
arXiv Detail & Related papers (2024-10-15T15:08:57Z) - Empirical Insights on Fine-Tuning Large Language Models for Question-Answering [50.12622877002846]
Large language models (LLMs) encode extensive world knowledge through pre-training on massive datasets, which can be fine-tuned for the question-answering (QA) task.
We categorize supervised fine-tuning (SFT) data based on the extent of knowledge memorized by the pretrained LLMs.
Our experiments show that as few as 60 data points during the SFT stage can activate the knowledge encoded during pre-training, enabling LLMs to perform the QA task.
arXiv Detail & Related papers (2024-09-24T07:38:38Z) - An Evaluation of Standard Statistical Models and LLMs on Time Series Forecasting [16.583730806230644]
This study highlights the key challenges that large language models encounter in the context of time series prediction.
The empirical results indicate that while large language models can perform well in zero-shot forecasting for certain datasets, their predictive accuracy diminishes notably when confronted with diverse time series data and traditional signals.
arXiv Detail & Related papers (2024-08-09T05:13:03Z) - A Comprehensive Evaluation of Large Language Models on Temporal Event Forecasting [45.0261082985087]
We conduct a comprehensive evaluation of Large Language Models (LLMs) for temporal event forecasting.
We find that directly integrating raw texts into the input of LLMs does not enhance zero-shot extrapolation performance.
In contrast, incorporating raw texts in specific complex events and fine-tuning LLMs significantly improves performance.
arXiv Detail & Related papers (2024-07-16T11:58:54Z) - Time Series Forecasting with LLMs: Understanding and Enhancing Model Capabilities [46.02234423159257]
Large language models (LLMs) have been applied in many fields and have developed rapidly in recent years.
Recent works treat large language models as emphzero-shot time series reasoners without further fine-tuning.
Our study shows that LLMs perform well in predicting time series with clear patterns and trends, but face challenges with datasets lacking periodicity.
arXiv Detail & Related papers (2024-02-16T17:15:28Z) - Multi-Patch Prediction: Adapting LLMs for Time Series Representation
Learning [22.28251586213348]
aLLM4TS is an innovative framework that adapts Large Language Models (LLMs) for time-series representation learning.
A distinctive element of our framework is the patch-wise decoding layer, which departs from previous methods reliant on sequence-level decoding.
arXiv Detail & Related papers (2024-02-07T13:51:26Z) - AutoTimes: Autoregressive Time Series Forecasters via Large Language Models [67.83502953961505]
AutoTimes projects time series into the embedding space of language tokens and autoregressively generates future predictions with arbitrary lengths.
We formulate time series as prompts, extending the context for prediction beyond the lookback window.
AutoTimes achieves state-of-the-art with 0.1% trainable parameters and over $5times$ training/inference speedup.
arXiv Detail & Related papers (2024-02-04T06:59:21Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
Time series forecasting holds significant importance in many real-world dynamic systems.
We present Time-LLM, a reprogramming framework to repurpose large language models for time series forecasting.
Time-LLM is a powerful time series learner that outperforms state-of-the-art, specialized forecasting models.
arXiv Detail & Related papers (2023-10-03T01:31:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.