CMISR: Circular Medical Image Super-Resolution
- URL: http://arxiv.org/abs/2308.08567v2
- Date: Thu, 29 Feb 2024 10:28:35 GMT
- Title: CMISR: Circular Medical Image Super-Resolution
- Authors: Honggui Li, Nahid Md Lokman Hossain, Maria Trocan, Dimitri Galayko,
Mohamad Sawan
- Abstract summary: This paper proposes a global feedback-based closed-cycle framework, circular MISR (CMISR)
CMISR holds plug-and-play characteristic that fuses model-based and learning-based approaches.
Five CMISR algorithms are respectively proposed based on the state-of-the-art open-loop MISR algorithms.
- Score: 2.5899040911480182
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Classical methods of medical image super-resolution (MISR) utilize open-loop
architecture with implicit under-resolution (UR) unit and explicit
super-resolution (SR) unit. The UR unit can always be given, assumed, or
estimated, while the SR unit is elaborately designed according to various SR
algorithms. The closed-loop feedback mechanism is widely employed in current
MISR approaches and can efficiently improve their performance. The feedback
mechanism may be divided into two categories: local feedback and global
feedback. Therefore, this paper proposes a global feedback-based closed-cycle
framework, circular MISR (CMISR), with unambiguous UR and advanced SR elements.
Mathematical model and closed-loop equation of CMISR are built. Mathematical
proof with Taylor-series approximation indicates that CMISR has zero recovery
error in steady-state. In addition, CMISR holds plug-and-play characteristic
that fuses model-based and learning-based approaches and can be established on
any existing MISR algorithms. Five CMISR algorithms are respectively proposed
based on the state-of-the-art open-loop MISR algorithms. Experimental results
with three scale factors and on three open medical image datasets show that
CMISR is superior to MISR in reconstruction performance and is particularly
suited to medical images with strong edges or intense contrast.
Related papers
- Decoupling Multi-Contrast Super-Resolution: Pairing Unpaired Synthesis with Implicit Representations [6.255537948555454]
Multi-Contrast Super-Resolution techniques can boost the quality of their low-resolution counterparts.<n>Existing MCSR methods often assume fixed resolution settings and all require large, perfectly paired training datasets.<n>We propose a novel Modular Multi-Contrast Super-Resolution framework that eliminates the need for paired training data and supports arbitrary upscaling.
arXiv Detail & Related papers (2025-05-09T07:48:52Z) - TC-KANRecon: High-Quality and Accelerated MRI Reconstruction via Adaptive KAN Mechanisms and Intelligent Feature Scaling [7.281993256973667]
This study presents an innovative conditional guided diffusion model, named as TC-KANRecon.
It incorporates the Multi-Free U-KAN (MF-UKAN) module and a dynamic clipping strategy.
Experimental results demonstrate that the proposed method outperforms other MRI reconstruction methods in both qualitative and quantitative evaluations.
arXiv Detail & Related papers (2024-08-11T06:31:56Z) - Frequency-Assisted Mamba for Remote Sensing Image Super-Resolution [49.902047563260496]
We develop the first attempt to integrate the Vision State Space Model (Mamba) for remote sensing image (RSI) super-resolution.
To achieve better SR reconstruction, building upon Mamba, we devise a Frequency-assisted Mamba framework, dubbed FMSR.
Our FMSR features a multi-level fusion architecture equipped with the Frequency Selection Module (FSM), Vision State Space Module (VSSM), and Hybrid Gate Module (HGM)
arXiv Detail & Related papers (2024-05-08T11:09:24Z) - DiffCMR: Fast Cardiac MRI Reconstruction with Diffusion Probabilistic
Models [11.068359534951783]
DiffCMR perceives conditioning signals from the under-sampled MRI image slice and generates its corresponding fully-sampled MRI image slice.
We validate DiffCMR with cine reconstruction and T1/T2 mapping tasks on MICCAI 2023 Cardiac MRI Reconstruction Challenge dataset.
Results show that our method achieves state-of-the-art performance, exceeding previous methods by a significant margin.
arXiv Detail & Related papers (2023-12-08T06:11:21Z) - Uni-COAL: A Unified Framework for Cross-Modality Synthesis and
Super-Resolution of MR Images [34.79786909094346]
Cross-modality synthesis (CMS), super-resolution (SR), and their combination (CMSR) have been extensively studied for magnetic resonance imaging (MRI)
None of the previous works is capable of performing CMS, SR, and CMSR using a unified network.
We propose a Unified Co-Modulated Alias-free framework (Uni-COAL) to accomplish the aforementioned tasks with a single network.
arXiv Detail & Related papers (2023-11-14T15:05:59Z) - ICF-SRSR: Invertible scale-Conditional Function for Self-Supervised
Real-world Single Image Super-Resolution [60.90817228730133]
Single image super-resolution (SISR) is a challenging problem that aims to up-sample a given low-resolution (LR) image to a high-resolution (HR) counterpart.
Recent approaches are trained on simulated LR images degraded by simplified down-sampling operators.
We propose a novel Invertible scale-Conditional Function (ICF) which can scale an input image and then restore the original input with different scale conditions.
arXiv Detail & Related papers (2023-07-24T12:42:45Z) - Dual Arbitrary Scale Super-Resolution for Multi-Contrast MRI [23.50915512118989]
Multi-contrast Super-Resolution (SR) reconstruction is promising to yield SR images with higher quality.
radiologists are accustomed to zooming the MR images at arbitrary scales rather than using a fixed scale.
We propose an implicit neural representations based dual-arbitrary multi-contrast MRI super-resolution method, called Dual-ArbNet.
arXiv Detail & Related papers (2023-07-05T14:43:26Z) - Compound Attention and Neighbor Matching Network for Multi-contrast MRI
Super-resolution [7.197850827700436]
Multi-contrast super-resolution of MRI can achieve better results than single-image super-resolution.
We propose a novel network architecture with compound-attention and neighbor matching (CANM-Net) for multi-contrast MRI SR.
CANM-Net outperforms state-of-the-art approaches in both retrospective and prospective experiments.
arXiv Detail & Related papers (2023-07-05T09:44:02Z) - Bridging Component Learning with Degradation Modelling for Blind Image
Super-Resolution [69.11604249813304]
We propose a components decomposition and co-optimization network (CDCN) for blind SR.
CDCN decomposes the input LR image into structure and detail components in feature space.
We present a degradation-driven learning strategy to jointly supervise the HR image detail and structure restoration process.
arXiv Detail & Related papers (2022-12-03T14:53:56Z) - Learning Detail-Structure Alternative Optimization for Blind
Super-Resolution [69.11604249813304]
We propose an effective and kernel-free network, namely DSSR, which enables recurrent detail-structure alternative optimization without blur kernel prior incorporation for blind SR.
In our DSSR, a detail-structure modulation module (DSMM) is built to exploit the interaction and collaboration of image details and structures.
Our method achieves the state-of-the-art against existing methods.
arXiv Detail & Related papers (2022-12-03T14:44:17Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
We show how to unfold an iterative MGDUN algorithm into a novel model-guided deep unfolding network by taking the MRI observation matrix.
In this paper, we propose a novel Model-Guided interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction.
arXiv Detail & Related papers (2022-09-15T03:58:30Z) - ReconFormer: Accelerated MRI Reconstruction Using Recurrent Transformer [60.27951773998535]
We propose a recurrent transformer model, namely textbfReconFormer, for MRI reconstruction.
It can iteratively reconstruct high fertility magnetic resonance images from highly under-sampled k-space data.
We show that it achieves significant improvements over the state-of-the-art methods with better parameter efficiency.
arXiv Detail & Related papers (2022-01-23T21:58:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.