論文の概要: Quantifying Overfitting: Introducing the Overfitting Index
- arxiv url: http://arxiv.org/abs/2308.08682v1
- Date: Wed, 16 Aug 2023 21:32:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-21 18:46:19.694054
- Title: Quantifying Overfitting: Introducing the Overfitting Index
- Title(参考訳): オーバーフィッティングの定量化 - オーバーフィッティング指標の導入
- Authors: Sanad Aburass
- Abstract要約: オーバーフィッティング(overfitting)とは、トレーニングデータでは優れたパフォーマンスを示すが、目に見えないデータではフェールである。
本稿では、モデルが過度に適合する傾向を定量的に評価するために考案された新しい指標であるOverfitting Index(OI)を紹介する。
我々の結果は、アーキテクチャ全体にわたる変数過度な振る舞いを強調し、データ拡張による緩和的な影響を強調します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the rapidly evolving domain of machine learning, ensuring model
generalizability remains a quintessential challenge. Overfitting, where a model
exhibits superior performance on training data but falters on unseen data, is a
recurrent concern. This paper introduces the Overfitting Index (OI), a novel
metric devised to quantitatively assess a model's tendency to overfit. Through
extensive experiments on the Breast Ultrasound Images Dataset (BUS) and the
MNIST dataset using architectures such as MobileNet, U-Net, ResNet, Darknet,
and ViT-32, we illustrate the utility and discernment of the OI. Our results
underscore the variable overfitting behaviors across architectures and
highlight the mitigative impact of data augmentation, especially on smaller and
more specialized datasets. The ViT-32's performance on MNIST further emphasizes
the robustness of certain models and the dataset's comprehensive nature. By
providing an objective lens to gauge overfitting, the OI offers a promising
avenue to advance model optimization and ensure real-world efficacy.
- Abstract(参考訳): 機械学習の急速に発展する領域において、モデルの一般化性を保証することは重要な課題である。
オーバーフィッティング(Overfitting)は、トレーニングデータでは優れたパフォーマンスを示すが、目に見えないデータではフェールである。
本稿では、モデルが過適合する傾向を定量的に評価するために考案された新しい指標であるOverfitting Index(OI)を紹介する。
また,MobileNet,U-Net,ResNet,Darknet,ViT-32などのアーキテクチャを用いたBUSとMNISTデータセットの広範な実験を通じて,OIの有用性と識別について解説する。
私たちの結果は、アーキテクチャ全体にわたる変数のオーバーフィット動作を強調し、特により小さく、より専門的なデータセットに対するデータ拡張の緩和効果を強調します。
ViT-32のMNISTの性能は、特定のモデルの堅牢性とデータセットの包括的な性質をさらに強調している。
オーバーフィッティングを測るための客観的レンズを提供することで、OIはモデル最適化を前進させ、実世界の有効性を確保するための有望な道を提供する。
関連論文リスト
- DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
現在の知覚モデルは、リソース集約的なデータセットに大きく依存している。
セグメンテーションを通じて知覚認識損失(P.A.損失)を導入し、品質と制御性の両方を改善した。
本手法は,世代間における知覚認識属性(P.A. Attr)の抽出と利用により,データ拡張をカスタマイズする。
論文 参考訳(メタデータ) (2024-03-20T04:58:03Z) - Towards In-Vehicle Multi-Task Facial Attribute Recognition:
Investigating Synthetic Data and Vision Foundation Models [8.54530542456452]
車両の乗客の顔の特徴を認識する複雑なマルチタスクモデルを訓練するための合成データセットの有用性について検討する。
我々の研究は直感に反する発見を明らかにし、特に特定のマルチタスクコンテキストにおいて、ViTよりもResNetの方が優れた性能を示した。
論文 参考訳(メタデータ) (2024-03-10T04:17:54Z) - Data-efficient Large Vision Models through Sequential Autoregression [58.26179273091461]
限られたデータセットに基づいて,効率的な自己回帰に基づく視覚モデルを構築する。
このモデルは,高レベル・低レベルのセマンティック理解の両方にまたがる視覚的タスクにおいて,その習熟度をいかに達成するかを実証する。
我々の経験的評価は、モデルが様々なタスクに適応する際の機敏さを強調し、パラメータフットプリントの大幅な削減を図った。
論文 参考訳(メタデータ) (2024-02-07T13:41:53Z) - AttributionScanner: A Visual Analytics System for Model Validation with Metadata-Free Slice Finding [29.07617945233152]
データスライス検索は、低パフォーマンスを示すデータセット内のサブグループを特定し解析することで、機械学習(ML)モデルを検証するための新興技術である。
このアプローチは、追加メタデータに対する退屈でコストのかかる要件を含む、重大な課題に直面します。
本稿では,メタデータを含まないデータスライス検索用に設計された,革新的なビジュアルアナリティクス(VA)システムであるAttributionScannerを紹介する。
本システムでは、一般的なモデル動作を含む解釈可能なデータスライスを特定し、属性モザイク設計によりこれらのパターンを可視化する。
論文 参考訳(メタデータ) (2024-01-12T09:17:32Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model
Perspective [67.25782152459851]
より優れた重量空間を実現するために、新しいデータモデル共設計視点を導入する。
具体的には、提案したVPNフレームワークでニューラルネットワークのスパーシフィケーションをアップグレードするために、カスタマイズされたVisual Promptが実装されている。
論文 参考訳(メタデータ) (2023-12-03T13:50:24Z) - StableLLaVA: Enhanced Visual Instruction Tuning with Synthesized
Image-Dialogue Data [129.92449761766025]
本稿では,視覚的インストラクションチューニングのための画像と対話を同期的に合成する新しいデータ収集手法を提案する。
このアプローチは生成モデルのパワーを活用し、ChatGPTとテキスト・ツー・イメージ生成モデルの能力とを結合する。
本研究は,各種データセットを対象とした総合的な実験を含む。
論文 参考訳(メタデータ) (2023-08-20T12:43:52Z) - Exploring the Effects of Data Augmentation for Drivable Area
Segmentation [0.0]
既存の画像データセットを解析することで、データ拡張の利点を調べることに重点を置いている。
以上の結果から,既存技術(SOTA)モデルの性能とロバスト性は劇的に向上する可能性が示唆された。
論文 参考訳(メタデータ) (2022-08-06T03:39:37Z) - MAIN: Multihead-Attention Imputation Networks [4.427447378048202]
本稿では,任意のモデルに適用可能なマルチヘッドアテンションに基づく新しいメカニズムを提案する。
提案手法は、下流タスクの性能を向上させるために、入力データの欠落パターンを誘導的にモデル化する。
論文 参考訳(メタデータ) (2021-02-10T13:50:02Z) - Improving Zero and Few-Shot Abstractive Summarization with Intermediate
Fine-tuning and Data Augmentation [101.26235068460551]
大規模テキストコーパス上での自己教師対象による事前学習モデルは、英語テキスト要約タスクにおける最先端のパフォーマンスを達成する。
モデルは通常、数十万のデータポイントで微調整されるが、これは新しいニッチなドメインに要約を適用する際に、実現不可能な要件である。
我々は、教師なし、データセット固有の方法で要約のための訓練済みモデルを微調整するための、WikiTransferと呼ばれる新しい一般化可能な手法を紹介した。
論文 参考訳(メタデータ) (2020-10-24T08:36:49Z) - Adversarial Filters of Dataset Biases [96.090959788952]
大規模なニューラルモデルでは、言語とビジョンベンチマークで人間レベルのパフォーマンスが実証されている。
それらの性能は、敵対的またはアウト・オブ・ディストリビューションのサンプルで著しく低下する。
このようなデータセットバイアスを逆フィルタするAFLiteを提案する。
論文 参考訳(メタデータ) (2020-02-10T21:59:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。