論文の概要: Imbalance-Aware Culvert-Sewer Defect Segmentation Using an Enhanced Feature Pyramid Network
- arxiv url: http://arxiv.org/abs/2408.10181v1
- Date: Mon, 19 Aug 2024 17:40:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 15:13:19.383096
- Title: Imbalance-Aware Culvert-Sewer Defect Segmentation Using an Enhanced Feature Pyramid Network
- Title(参考訳): 改良された特徴ピラミッドネットワークを用いた不均衡を考慮したCulvert-Swer欠陥分割
- Authors: Rasha Alshawi, Md Meftahul Ferdaus, Mahdi Abdelguerfi, Kendall Niles, Ken Pathak, Steve Sloan,
- Abstract要約: 本稿では,不均衡なデータセット内での変質管と下水道管のセマンティックセグメンテーションの深層学習モデルを提案する。
このモデルは、データセットの不均衡に対応するために、クラス分解やデータ拡張のような戦略を採用している。
E-FPNが最先端の手法より優れていることを示す。
- 参考スコア(独自算出の注目度): 1.7466076090043157
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Imbalanced datasets are a significant challenge in real-world scenarios. They lead to models that underperform on underrepresented classes, which is a critical issue in infrastructure inspection. This paper introduces the Enhanced Feature Pyramid Network (E-FPN), a deep learning model for the semantic segmentation of culverts and sewer pipes within imbalanced datasets. The E-FPN incorporates architectural innovations like sparsely connected blocks and depth-wise separable convolutions to improve feature extraction and handle object variations. To address dataset imbalance, the model employs strategies like class decomposition and data augmentation. Experimental results on the culvert-sewer defects dataset and a benchmark aerial semantic segmentation drone dataset show that the E-FPN outperforms state-of-the-art methods, achieving an average Intersection over Union (IoU) improvement of 13.8% and 27.2%, respectively. Additionally, class decomposition and data augmentation together boost the model's performance by approximately 6.9% IoU. The proposed E-FPN presents a promising solution for enhancing object segmentation in challenging, multi-class real-world datasets, with potential applications extending beyond culvert-sewer defect detection.
- Abstract(参考訳): 不均衡データセットは、現実世界のシナリオにおいて重要な課題である。
これらは、インフラ検査において重要な問題である、表現不足のクラスで過小評価されるモデルに導かれる。
本稿では,不均衡なデータセット内でのインバータと下水道管のセマンティックセグメンテーションのためのディープラーニングモデルである拡張特徴ピラミッドネットワーク(E-FPN)を紹介する。
E-FPNは、疎結合なブロックや奥行きの分離可能な畳み込みのようなアーキテクチャの革新を取り入れ、特徴抽出を改善し、オブジェクトのバリエーションを処理する。
データセットの不均衡に対処するため、モデルはクラス分解やデータ拡張のような戦略を採用している。
E-FPNは最先端の手法よりも優れており、平均的なIoU(Intersection over Union)の改善は13.8%と27.2%である。
さらに、クラス分解とデータ拡張が組み合わさって、モデルの性能を約6.9%向上させる。
提案したE-FPNは、課題の多いマルチクラスの実世界のデータセットにおいて、オブジェクトセグメンテーションを強化するための有望なソリューションを提供する。
関連論文リスト
- Generative AI-Powered Plugin for Robust Federated Learning in Heterogeneous IoT Networks [3.536605202672355]
フェデレーション学習により、エッジデバイスは、データのローカライズを維持しながら、データのプライバシを維持しながら、グローバルモデルを協調的にトレーニングすることが可能になる。
我々は,AI強化データ拡張と均衡サンプリング戦略により,IIDからIDDへの非IIDデータ分布を近似する,フェデレーション最適化技術のための新しいプラグインを提案する。
論文 参考訳(メタデータ) (2024-10-31T11:13:47Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - ADLDA: A Method to Reduce the Harm of Data Distribution Shift in Data Augmentation [11.887799310374174]
本研究では,データ分散シフトの負の影響を軽減することを目的とした新しいデータ拡張手法であるADLDAを紹介する。
実験により、ADLDAは複数のデータセットにわたるモデル性能を著しく向上させることが示された。
論文 参考訳(メタデータ) (2024-05-11T03:20:35Z) - Revisiting Generative Adversarial Networks for Binary Semantic
Segmentation on Imbalanced Datasets [20.538287907723713]
異常き裂領域検出は典型的なバイナリセマンティックセグメンテーションタスクであり、アルゴリズムによって舗装面画像上のひび割れを表す画素を自動的に検出することを目的としている。
既存のディープラーニングベースの手法は、特定の公共舗装のデータセットで優れた結果を得たが、不均衡なデータセットでは性能が劇的に低下する。
画素レベルの異常き裂領域検出タスクに対して,条件付き生成逆ネットワーク(cGAN)に基づくディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-03T19:24:40Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
フェデレートされた学習は、微調整された特徴をスキイングし、モデルの堅牢性を損なうリスクがある。
3つのロバスト性指標を導入し、多様なロバストデータセットで実験を行う。
提案手法は,パラメータ効率のよい微調整手法を含む多種多様なシナリオにまたがるロバスト性を著しく向上させる。
論文 参考訳(メタデータ) (2024-01-25T09:18:51Z) - Fake It Till Make It: Federated Learning with Consensus-Oriented
Generation [52.82176415223988]
コンセンサス指向生成による連合学習(FedCOG)を提案する。
FedCOGは、補完的なデータ生成と知識蒸留に基づくモデルトレーニングという、クライアント側の2つの重要なコンポーネントで構成されています。
古典的および実世界のFLデータセットの実験は、FedCOGが一貫して最先端の手法より優れていることを示している。
論文 参考訳(メタデータ) (2023-12-10T18:49:59Z) - Quantifying Overfitting: Introducing the Overfitting Index [0.0]
オーバーフィッティング(overfitting)とは、トレーニングデータでは優れたパフォーマンスを示すが、目に見えないデータではフェールである。
本稿では、モデルが過度に適合する傾向を定量的に評価するために考案された新しい指標であるOverfitting Index(OI)を紹介する。
我々の結果は、アーキテクチャ全体にわたる変数過度な振る舞いを強調し、データ拡張による緩和的な影響を強調します。
論文 参考訳(メタデータ) (2023-08-16T21:32:57Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
本稿では、データの不均一性を考慮した無線FLの性能解析と最適化と、無線リソース割り当てについて述べる。
ロス関数の最小化問題を、長期エネルギー消費と遅延の制約の下で定式化し、クライアントスケジューリング、リソース割り当て、ローカルトレーニングエポック数(CRE)を共同で最適化する。
実世界のデータセットの実験により、提案アルゴリズムは学習精度とエネルギー消費の点で他のベンチマークよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-08-04T04:18:01Z) - Self-Supervised Pre-Training for Transformer-Based Person
Re-Identification [54.55281692768765]
トランスフォーマーに基づく教師付き事前訓練は、人物再識別(ReID)において大きなパフォーマンスを達成する
ImageNetとReIDデータセットのドメインギャップのため、通常、パフォーマンスを高めるために、より大きなトレーニング済みデータセットが必要です。
この研究は、データとモデル構造の観点から、事前トレーニングデータセットとReIDデータセットのギャップを軽減することを目的としている。
論文 参考訳(メタデータ) (2021-11-23T18:59:08Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
最近のコンピュータビジョンの進歩は、分類モデルの一般化能力を改善するために、逆データ拡張を利用する。
本稿では,中間的特徴埋め込みにおける敵対的拡張を提唱する効率的かつ効率的な代替手法を提案する。
代表的なバックボーンネットワークを用いて,多様な視覚認識タスクにまたがる提案手法を検証する。
論文 参考訳(メタデータ) (2021-03-22T20:36:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。